These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31812051)

  • 1. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: Mechanism, impacting factors and pathways.
    Yang S; Liu Y; Shen C; Li F; Yang B; Huang M; Yang M; Wang Z; Sand W
    Chemosphere; 2020 Apr; 244():125525. PubMed ID: 31812051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter.
    Liu Y; Liu H; Zhou Z; Wang T; Ong CN; Vecitis CD
    Environ Sci Technol; 2015 Jul; 49(13):7974-80. PubMed ID: 26056728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into estrogenic activity removal using carbon nanotube electrochemical filter.
    Cunha GDS; Souza-Chaves BM; Bila DM; Bassin JP; Vecitis CD; Dezotti M
    Sci Total Environ; 2019 Aug; 678():448-456. PubMed ID: 31077923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti
    Wang J; Zhi D; Zhou H; He X; Zhang D
    Water Res; 2018 Jun; 137():324-334. PubMed ID: 29567608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode.
    Wu J; Zhang H; Oturan N; Wang Y; Chen L; Oturan MA
    Chemosphere; 2012 May; 87(6):614-20. PubMed ID: 22342334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption.
    Liu H; Zuo K; Vecitis CD
    Environ Sci Technol; 2014 Dec; 48(23):13871-9. PubMed ID: 25369519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of bisphenol A by electrochemical carbon-nanotube filter: Influential factors and degradation pathway.
    Bakr AR; Rahaman MS
    Chemosphere; 2017 Oct; 185():879-887. PubMed ID: 28746997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.
    Bakr AR; Rahaman MS
    Chemosphere; 2016 Jun; 153():508-20. PubMed ID: 27035389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter.
    Liu Y; Liu F; Qi Z; Shen C; Li F; Ma C; Huang M; Wang Z; Li J
    Environ Pollut; 2019 Aug; 251():72-80. PubMed ID: 31071635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-assisted electrochemical abatement of trifluralin using a cathode containing a C
    Hasanzadeh A; Khataee A; Zarei M; Joo SW
    Chemosphere; 2018 May; 199():510-523. PubMed ID: 29454173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO
    Duan P; Gao S; Lei J; Li X; Hu X
    Environ Pollut; 2020 Aug; 263(Pt B):114436. PubMed ID: 32259720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous electrochemical degradation of tetracycline and metronidazole through a high-efficiency and low-energy-consumption advanced oxidation process.
    Wang L; Liu Y; Pang D; Song H; Zhang S
    Chemosphere; 2022 Apr; 292():133469. PubMed ID: 34973244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Graphite-UiO-66(Zr)/Ti electrode for efficient electrochemical oxidation of tetracycline in water.
    Jiang B; Liu F; Pan Y; Tan Y; Shuang C; Li A
    PLoS One; 2022; 17(8):e0271075. PubMed ID: 35944028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection: New strategy of CNT disinfection.
    Xie L; Shu Y; Hu Y; Cheng J; Chen Y
    Chemosphere; 2020 Jul; 251():126286. PubMed ID: 32146182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-oxidation of perfluorooctanoic acid by carbon nanotube sponge anode and the mechanism.
    Xue A; Yuan ZW; Sun Y; Cao AY; Zhao HZ
    Chemosphere; 2015 Dec; 141():120-6. PubMed ID: 26172515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton.
    Gao G; Zhang Q; Hao Z; Vecitis CD
    Environ Sci Technol; 2015 Feb; 49(4):2375-83. PubMed ID: 25602741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chloride-radical-mediated electrochemical filtration system for rapid and effective transformation of ammonia to nitrogen.
    Li F; Peng X; Liu Y; Mei J; Sun L; Shen C; Ma C; Huang M; Wang Z; Sand W
    Chemosphere; 2019 Aug; 229():383-391. PubMed ID: 31082705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2-Sb2O5-IrO2 anode: kinetics, byproducts and biodegradability.
    Chu Y; Zhang D; Liu L; Qian Y; Li L
    J Hazard Mater; 2013 May; 252-253():306-12. PubMed ID: 23548920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes.
    Pourzamani H; Mengelizadeh N; Hajizadeh Y; Mohammadi H
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24746-24763. PubMed ID: 29923052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.