BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31812078)

  • 1. Controlled degradation of poly-ε-caprolactone for resorbable scaffolds.
    Hegyesi N; Hodosi E; Polyák P; Faludi G; Balogh-Weiser D; Pukánszky B
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110678. PubMed ID: 31812078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corona charge selective micelle degradation catalyzed by P. cepacia lipase isoforms.
    Zhu X; Fryd M; Valentine AM; Wayland BB
    Chem Commun (Camb); 2014 Jan; 50(8):964-7. PubMed ID: 24301683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation.
    Khan I; Ray Dutta J; Ganesan R
    Int J Biol Macromol; 2017 Feb; 95():126-131. PubMed ID: 27865950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel differential refractometry study of the enzymatic degradation kinetics of poly(ethylene oxide)-b-poly(epsilon-caprolactone) particles dispersed in water.
    Lam H; Gong X; Wu C
    J Phys Chem B; 2007 Feb; 111(7):1531-5. PubMed ID: 17266357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-memory properties and degradation behavior of multifunctional electro-spun scaffolds.
    Kratz K; Habermann R; Becker T; Richau K; Lendlein A
    Int J Artif Organs; 2011 Feb; 34(2):225-30. PubMed ID: 21374579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase.
    Shi K; Jing J; Song L; Su T; Wang Z
    Int J Biol Macromol; 2020 Feb; 144():183-189. PubMed ID: 31843602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic Degradation of Oligo(ε-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface.
    Roßberg J; Rottke FO; Schulz B; Lendlein A
    Macromol Rapid Commun; 2016 Dec; 37(23):1966-1971. PubMed ID: 27762464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the drug release property of cholesteryl end-functionalized poly(epsilon-caprolactone) microspheres.
    Yu L; Zhang H; Cheng SX; Zhuo RX; Li H
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):39-46. PubMed ID: 16206259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of amphiphilic poly(epsilon-caprolactone) macromonomers by lipase catalysis.
    Córdova A
    Biomacromolecules; 2001; 2(4):1347-51. PubMed ID: 11777414
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of block length on the enzymatic degradation and erosion of oxazoline linked poly-epsilon-caprolactone.
    Pulkkinen M; Malin M; Tarvainen T; Saarimäki T; Seppälä J; Järvinen K
    Eur J Pharm Sci; 2007 Jun; 31(2):119-28. PubMed ID: 17433634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films.
    Ooya T; Sakata Y; Choi HW; Takeuchi T
    Acta Biomater; 2016 Jul; 38():163-7. PubMed ID: 27090591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment.
    Liu J; Bai S; Jin Q; Zhong H; Li C; Yang Q
    Langmuir; 2012 Jun; 28(25):9788-96. PubMed ID: 22642540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase.
    Mohammadi NS; Khiabani MS; Ghanbarzadeh B; Mokarram RR
    World J Microbiol Biotechnol; 2020 Mar; 36(3):45. PubMed ID: 32130535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel.
    Abaházi E; Boros Z; Poppe L
    Molecules; 2014 Jul; 19(7):9818-37. PubMed ID: 25006788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation and drug release property of star poly(epsilon-caprolactone)s with dendritic cores.
    Miao ZM; Cheng SX; Zhang XZ; Wang QR; Zhuo RX
    J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):40-9. PubMed ID: 16924617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica.
    Jin Q; Jia G; Zhang Y; Yang Q; Li C
    Langmuir; 2011 Oct; 27(19):12016-24. PubMed ID: 21851086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective enzymatic degradation of poly(epsilon-caprolactone) containing multiblock copolymers.
    Kulkarni A; Reiche J; Hartmann J; Kratz K; Lendlein A
    Eur J Pharm Biopharm; 2008 Jan; 68(1):46-56. PubMed ID: 17884401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burkholderia cepacia lipase immobilization for hydrolytic reactions and the kinetic resolution of the non-equimolar mixtures of isomeric alcohols.
    Hrydziuszko Z; Strub DJ; Labus K; Bryjak J
    Bioorg Chem; 2019 Dec; 93():102745. PubMed ID: 30691728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.
    Kato K; Seelan S
    J Biosci Bioeng; 2010 Jun; 109(6):615-7. PubMed ID: 20471602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.