BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31812423)

  • 1. The effect of desertification on frozen soil on the Qinghai-Tibet plateau.
    Wang L; Wu Q; Jiang G
    Sci Total Environ; 2020 Apr; 711():134640. PubMed ID: 31812423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of desertification on permafrost environment in Qinghai-Tibetan Plateau.
    Chen L; Yu W; Han F; Lu Y; Zhang T
    J Environ Manage; 2020 May; 262():110302. PubMed ID: 32250787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No protection of permafrost due to desertification on the Qinghai-Tibet Plateau.
    Wu Q; Yu W; Jin H
    Sci Rep; 2017 May; 7(1):1544. PubMed ID: 28484237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau.
    Yuan L; Zhao L; Li R; Hu G; Du E; Qiao Y; Ma L
    Sci Total Environ; 2020 Apr; 712():136392. PubMed ID: 31931221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images.
    Zhang CL; Li Q; Shen YP; Zhou N; Wang XS; Li J; Jia WR
    Sci Total Environ; 2018 Apr; 619-620():1648-1659. PubMed ID: 29061294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key evidence of the role of desertification in protecting the underlying permafrost in the Qinghai-Tibet Plateau.
    Xie S; Qu J; Lai Y; Xu X; Pang Y
    Sci Rep; 2015 Oct; 5():15152. PubMed ID: 26468777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permafrost Degradation Leads to Biomass and Species Richness Decreases on the Northeastern Qinghai-Tibet Plateau.
    Jin X; Jin H; Wu X; Luo D; Yu S; Li X; He R; Wang Q; Knops JMH
    Plants (Basel); 2020 Oct; 9(11):. PubMed ID: 33126554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact process and mechanism of summertime rainfall on thermal-moisture regime of active layer in permafrost regions of central Qinghai-Tibet Plateau.
    Zhang M; Wen Z; Li D; Chou Y; Zhou Z; Zhou F; Lei B
    Sci Total Environ; 2021 Nov; 796():148970. PubMed ID: 34274663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China.
    Yin G; Niu F; Lin Z; Luo J; Liu M
    Sci Total Environ; 2017 Mar; 581-582():472-485. PubMed ID: 28057338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.
    Qin Y; Yang D; Gao B; Wang T; Chen J; Chen Y; Wang Y; Zheng G
    Sci Total Environ; 2017 Dec; 605-606():830-841. PubMed ID: 28683427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of active layer freeze-thaw cycles on the riverine dissolved carbon export on the Qinghai-Tibet Plateau permafrost region.
    Song C; Wang G; Mao T; Chen X; Huang K; Sun X; Hu Z
    PeerJ; 2019; 7():e7146. PubMed ID: 31245186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau.
    Wang W; Wu T; Chen Y; Li R; Xie C; Qiao Y; Zhu X; Hao J; Ni J
    Sci Total Environ; 2019 Oct; 688():542-554. PubMed ID: 31254820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China.
    Luo D; Jin H; Wu Q; Bense VF; He R; Ma Q; Gao S; Jin X; Lü L
    Sci Total Environ; 2018 Mar; 618():1033-1045. PubMed ID: 29092743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Response of Shallow Groundwater Levels to Soil Freeze-Thaw Process on the Qinghai-Tibet Plateau.
    Dai L; Guo X; Du Y; Zhang F; Ke X; Cao Y; Li Y; Li Q; Lin L; Cao G
    Ground Water; 2019 Jul; 57(4):602-611. PubMed ID: 30324716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using MODIS Land Surface Temperatures for Permafrost Thermal Modeling in Beiluhe Basin on the Qinghai-Tibet Plateau.
    Li A; Xia C; Bao C; Yin G
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique.
    Yang Y; Wu Q; Hou Y; Zhang Z; Zhan J; Gao S; Jin H
    Sci Total Environ; 2017 Dec; 605-606():199-210. PubMed ID: 28667847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical distribution characteristics of soil mercury and its formation mechanism in permafrost regions: A case study of the Qinghai-Tibetan Plateau.
    Liu Y; Wang J; Guo J; Wang L; Wu Q
    J Environ Sci (China); 2022 Mar; 113():311-321. PubMed ID: 34963540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral flow between bald and vegetation patches induces the degradation of alpine meadow in Qinghai-Tibetan Plateau.
    Jiang XJ; Zhu X; Yuan ZQ; Li XG; Liu W; Zakari S
    Sci Total Environ; 2021 Jan; 751():142338. PubMed ID: 33182017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground ice at depths in the Tianshuihai Lake basin on the western Qinghai-Tibet Plateau: An indication of permafrost evolution.
    Yang Y; Wu Q; Jiang G; Zhang P
    Sci Total Environ; 2020 Aug; 729():138966. PubMed ID: 32361452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of Desertification and Short-Term Effectiveness of Differing Treatments on Shifting Sand Dune Stabilization in an Alpine Rangeland.
    Feng X; Qu J; Fan Q; Tan L; An Z
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31817807
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.