These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31812560)

  • 1. Identification of camellia oil using FT-IR spectroscopy and chemometrics based on both isolated unsaponifiables and vegetable oils.
    He W; Lei T
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117839. PubMed ID: 31812560
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Shi T; Zhu M; Chen Y; Yan X; Chen Q; Wu X; Lin J; Xie M
    Food Chem; 2018 Mar; 242():308-315. PubMed ID: 29037694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Classification and Quantification of Camellia (
    Han J; Sun R; Zeng X; Zhang J; Xing R; Sun C; Chen Y
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32349404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics.
    Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ
    Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.
    Santana FB; Gontijo LC; Mitsutake H; Mazivila SJ; Souza LM; Borges Neto W
    Food Chem; 2016 Oct; 209():228-33. PubMed ID: 27173556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC-MS fingerprints.
    Shi T; Wu G; Jin Q; Wang X
    Food Chem; 2021 Aug; 352():129422. PubMed ID: 33714164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics.
    Ye Q; Meng X
    Food Chem; 2022 Aug; 385():132661. PubMed ID: 35299015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.
    Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of hazelnut oil adulteration using FT-IR spectroscopy.
    Ozen BF; Mauer LJ
    J Agric Food Chem; 2002 Jul; 50(14):3898-901. PubMed ID: 12083856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary supplement oil classification and detection of adulteration using Fourier transform infrared spectroscopy.
    Ozen BF; Weiss I; Mauer LJ
    J Agric Food Chem; 2003 Sep; 51(20):5871-6. PubMed ID: 13129287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics.
    Yuan L; Meng X; Xin K; Ju Y; Zhang Y; Yin C; Hu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122120. PubMed ID: 36473296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple and Portable Screening Method for Adulterated Olive Oils Using the Hand-Held FTIR Spectrometer and Chemometrics Tools.
    Pan M; Sun S; Zhou Q; Chen J
    J Food Sci; 2018 Jun; 83(6):1605-1612. PubMed ID: 29786845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.
    Jiménez-Sotelo P; Hernández-Martínez M; Osorio-Revilla G; Meza-Márquez OG; García-Ochoa F; Gallardo-Velázquez T
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1105-15. PubMed ID: 27314226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of terahertz spectroscopy and chemometrics for discrimination of transgenic camellia oil.
    Liu J; Fan L; Liu Y; Mao L; Kan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():165-169. PubMed ID: 30099314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods.
    Hu O; Chen J; Gao P; Li G; Du S; Fu H; Shi Q; Xu L
    J Sci Food Agric; 2019 Mar; 99(5):2285-2291. PubMed ID: 30324617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Discrimination of pressed and extracted camellia oils by Vis/NIR spectra combined with UVE-PLS-LDA].
    Wen ZC; Sun T; Geng X; Liu MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2354-8. PubMed ID: 24369630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment and evaluation of multiple adulteration detection of camellia oil by mixture design.
    Dou X; Zhang L; Chen Z; Wang X; Ma F; Yu L; Mao J; Li P
    Food Chem; 2023 Apr; 406():135050. PubMed ID: 36462349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent analysis of excitation-emission matrix fluorescence fingerprint to identify and quantify adulteration in camellia oil based on machine learning.
    Chen AQ; Wu HL; Wang T; Wang XZ; Sun HB; Yu RQ
    Talanta; 2023 Jan; 251():123733. PubMed ID: 35940112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection.
    Vieira LS; Assis C; de Queiroz MELR; Neves AA; de Oliveira AF
    Food Chem; 2021 May; 345():128866. PubMed ID: 33348130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FT-IR-based quantitative analysis strategy for target adulterant in fish oil multiply adulterated with terrestrial animal lipid.
    Gao B; Xu S; Han L; Liu X
    Food Chem; 2021 May; 343():128420. PubMed ID: 33143969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.