BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31812690)

  • 1. Thermal Reversion of Plant Phytochromes.
    Klose C; Nagy F; Schäfer E
    Mol Plant; 2020 Mar; 13(3):386-397. PubMed ID: 31812690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Phytochrome B Thermal Reversion Rates In Vivo.
    Klose C; Hiltbrunner A
    Methods Mol Biol; 2024; 2795():85-93. PubMed ID: 38594530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling.
    Viczián A; Ádám É; Staudt AM; Lambert D; Klement E; Romero Montepaone S; Hiltbrunner A; Casal J; Schäfer E; Nagy F; Klose C
    New Phytol; 2020 Feb; 225(4):1635-1650. PubMed ID: 31596952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of how phytochrome B dimerization determines its specificity.
    Klose C; Venezia F; Hussong A; Kircher S; Schäfer E; Fleck C
    Nat Plants; 2015 Jul; 1():15090. PubMed ID: 27250256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions Between phyB and PIF Proteins Alter Thermal Reversion Reactions in vitro.
    Smith RW; Helwig B; Westphal AH; Pel E; Borst JW; Fleck C
    Photochem Photobiol; 2017 Nov; 93(6):1525-1531. PubMed ID: 28503745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors.
    Klose C; Viczián A; Kircher S; Schäfer E; Nagy F
    New Phytol; 2015 May; 206(3):965-71. PubMed ID: 26042244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights of red light-induced development.
    Viczián A; Klose C; Ádám É; Nagy F
    Plant Cell Environ; 2017 Nov; 40(11):2457-2468. PubMed ID: 27943362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Darkness inhibits autokinase activity of bacterial bathy phytochromes.
    Huber C; Strack M; Schultheiß I; Pielage J; Mechler X; Hornbogen J; Diller R; Frankenberg-Dinkel N
    J Biol Chem; 2024 Apr; 300(4):107148. PubMed ID: 38462162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings.
    Hennig L; Büche C; Eichenberg K; Schäfer E
    Plant Physiol; 1999 Oct; 121(2):571-7. PubMed ID: 10517849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo characterization of chimeric phytochromes in yeast.
    Eichenberg K; Kunkel T; Kretsch T; Speth V; Schäfer E
    J Biol Chem; 1999 Jan; 274(1):354-9. PubMed ID: 9867850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B.
    Eichenberg K; Bäurle I; Paulo N; Sharrock RA; Rüdiger W; Schäfer E
    FEBS Lett; 2000 Mar; 470(2):107-12. PubMed ID: 10734217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families.
    Burgie ES; Gannam ZTK; McLoughlin KE; Sherman CD; Holehouse AS; Stankey RJ; Vierstra RD
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34039713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in
    Huang H; McLoughlin KE; Sorkin ML; Burgie ES; Bindbeutel RK; Vierstra RD; Nusinow DA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8603-8608. PubMed ID: 30948632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast.
    Kunkel T; Speth V; Büche C; Schäfer E
    J Biol Chem; 1995 Aug; 270(34):20193-200. PubMed ID: 7650038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants.
    Nagy F; Schäfer E
    Annu Rev Plant Biol; 2002; 53():329-55. PubMed ID: 12221979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergence in red light responses associated with thermal reversion of phytochrome B between high- and low-latitude species.
    Ikeda H; Suzuki T; Oka Y; Gustafsson ALS; Brochmann C; Mochizuki N; Nagatani A
    New Phytol; 2021 Jul; 231(1):75-84. PubMed ID: 33817798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototransformation and dark reversion of phytochrome in deuterium oxide.
    Sarkar HK; Song PS
    Biochemistry; 1981 Jul; 20(15):4315-20. PubMed ID: 6269588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion.
    Enderle B; Sheerin DJ; Paik I; Kathare PK; Schwenk P; Klose C; Ulbrich MH; Huq E; Hiltbrunner A
    Nat Commun; 2017 Dec; 8(1):2221. PubMed ID: 29263319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form.
    Hennig L; Schäfer E
    J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.