BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31812796)

  • 1. DNA fragment translocation through the lipid membrane assisted by carbon nanotube.
    Liang L; Zhang Y; Kong Z; Liu F; Shen JW; He Z; Wang H
    Int J Pharm; 2020 Jan; 574():118921. PubMed ID: 31812796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhance the efficiency of 5-fluorouracil targeted delivery by using a prodrug approach as a novel strategy for prolonged circulation time and improved permeation.
    Pasban S; Raissi H; Pakdel M; Farzad F
    Int J Pharm; 2019 Sep; 568():118491. PubMed ID: 31276765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers.
    Vögele M; Köfinger J; Hummer G
    Faraday Discuss; 2018 Sep; 209(0):341-358. PubMed ID: 29974904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics insight of interaction between the functionalized-carbon nanotube and cancerous cell membrane in doxorubicin delivery.
    Kordzadeh A; Zarif M; Amjad-Iranagh S
    Comput Methods Programs Biomed; 2023 Mar; 230():107332. PubMed ID: 36603233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected Cholesterol-Induced Destabilization of Lipid Membranes near Transmembrane Carbon Nanotubes.
    Guo Y; Werner M; Fleury JB; Baulin VA
    Phys Rev Lett; 2020 Jan; 124(3):038001. PubMed ID: 32031854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane.
    Sahoo AK; Kanchi S; Mandal T; Dasgupta C; Maiti PK
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6168-6179. PubMed ID: 29373024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.
    Ortega-Guerrero A; Espinosa-Duran JM; Velasco-Medina J
    Eur Biophys J; 2016 Jul; 45(5):423-33. PubMed ID: 26872481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
    Geng J; Kim K; Zhang J; Escalada A; Tunuguntla R; Comolli LR; Allen FI; Shnyrova AV; Cho KR; Munoz D; Wang YM; Grigoropoulos CP; Ajo-Franklin CM; Frolov VA; Noy A
    Nature; 2014 Oct; 514(7524):612-5. PubMed ID: 25355362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-tunable insertion process of carbon nanotubes into DNA nanotubes.
    Liang L; Zhang Z; Kong Z; Liu Y; Shen JW; Li D; Wang Q
    J Mol Graph Model; 2016 May; 66():20-5. PubMed ID: 27017425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.
    Yang Y; Li X; Jiang J; Du H; Zhao L; Zhao Y
    ACS Nano; 2010 Oct; 4(10):5755-62. PubMed ID: 20919730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nanotube express: Delivering a stapled peptide to the cell surface.
    Holdbrook DA; Marzinek JK; Boncel S; Boags A; Tan YS; Huber RG; Verma CS; Bond PJ
    J Colloid Interface Sci; 2021 Dec; 604():670-679. PubMed ID: 34280765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane perturbation by carbon nanotube insertion: pathways to internalization.
    Lelimousin M; Sansom MS
    Small; 2013 Nov; 9(21):3639-46. PubMed ID: 23418066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.
    Raczyński P; Górny K; Dawid A; Gburski Z
    Arch Biochem Biophys; 2014 Jul; 554():6-10. PubMed ID: 24796224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers.
    Gul G; Faller R; Ileri-Ercan N
    Biophys J; 2023 May; 122(10):1748-1761. PubMed ID: 37056052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and dynamics of membrane-spanning DNA nanopores.
    Maingi V; Burns JR; Uusitalo JJ; Howorka S; Marrink SJ; Sansom MS
    Nat Commun; 2017 Mar; 8():14784. PubMed ID: 28317903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation and encapsulation of siRNA inside carbon nanotubes.
    Mogurampelly S; Maiti PK
    J Chem Phys; 2013 Jan; 138(3):034901. PubMed ID: 23343299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study.
    Wallace EJ; Sansom MS
    Nano Lett; 2008 Sep; 8(9):2751-6. PubMed ID: 18665655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.