These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31812862)

  • 1. Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion.
    Godinez-Brizuela OE; Niasar VJ
    J Colloid Interface Sci; 2020 Mar; 561():162-172. PubMed ID: 31812862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling.
    Zhang L; Wang M
    J Colloid Interface Sci; 2017 Jan; 486():219-231. PubMed ID: 27716462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic Delivery of Reactants: Pore Water Chemistry Controls Transport, Mixing, and Degradation.
    Sprocati R; Gallo A; Sethi R; Rolle M
    Environ Sci Technol; 2021 Jan; 55(1):719-729. PubMed ID: 33295762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore network model of electrokinetic transport through charged porous media.
    Obliger A; Jardat M; Coelho D; Bekri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043013. PubMed ID: 24827338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction.
    Kim YW; Netz RR
    J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of network heterogeneity on electrokinetic transport in porous media.
    Alizadeh S; Bazant MZ; Mani A
    J Colloid Interface Sci; 2019 Oct; 553():451-464. PubMed ID: 31229864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
    Chen S; He X; Bertola V; Wang M
    J Colloid Interface Sci; 2014 Dec; 436():186-93. PubMed ID: 25278358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechano-chemical effects in weakly charged porous media.
    Zholkovskij EK; Yaroshchuk AE; Koval'chuk VI; Bondarenko MP
    Adv Colloid Interface Sci; 2015 Aug; 222():779-801. PubMed ID: 25438703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-scale investigation of micron-size polyacrylamide elastic microspheres (MPEMs) transport and retention in saturated porous media.
    Yao C; Lei G; Cathles LM; Steenhuis TS
    Environ Sci Technol; 2014 May; 48(9):5329-35. PubMed ID: 24749927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid dynamics in capillary and chip electrochromatography.
    Nischang I; Tallarek U
    Electrophoresis; 2007 Feb; 28(4):611-26. PubMed ID: 17253632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-scale study of water salinity effect on thin-film stability for a moving oil droplet.
    Abu-Al-Saud MO; Esmaeilzadeh S; Riaz A; Tchelepi HA
    J Colloid Interface Sci; 2020 Jun; 569():366-377. PubMed ID: 32126349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds.
    Nischang I; Chen G; Tallarek U
    J Chromatogr A; 2006 Mar; 1109(1):32-50. PubMed ID: 16386749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking mixing and flow topology in porous media: An experimental proof.
    Basilio Hazas M; Ziliotto F; Rolle M; Chiogna G
    Phys Rev E; 2022 Mar; 105(3-2):035105. PubMed ID: 35428141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic flow: From microfluidics to nanofluidics.
    Alizadeh A; Hsu WL; Wang M; Daiguji H
    Electrophoresis; 2021 Apr; 42(7-8):834-868. PubMed ID: 33382088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes.
    TEORELL T
    J Gen Physiol; 1959 Mar; 42(4):831-45. PubMed ID: 13631207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of electro-osmosis on physicochemical parameters and microstructure of clay soils.
    Korolev VA; Nesterov DS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):560-571. PubMed ID: 30729856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design criteria for soil cleaning operations in electrokinetic remediation: hydrodynamic aspects in a cylindrical geometry.
    Oyanader MA; Arce P; Dzurik A
    Electrophoresis; 2005 Aug; 26(15):2878-87. PubMed ID: 16007700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media.
    Sprocati R; Rolle M
    Water Res; 2022 Apr; 213():118161. PubMed ID: 35152137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.