BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3181328)

  • 21. Relaxometry of calf lens homogenates, including cross-relaxation by crystallin NH groups.
    Beaulieu CF; Clark JI; Brown RD; Spiller M; Koenig SH
    Magn Reson Med; 1988 Sep; 8(1):45-57. PubMed ID: 3173068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency.
    Michael R; van Marle J; Vrensen GF; van den Berg TJ
    Exp Eye Res; 2003 Jul; 77(1):93-9. PubMed ID: 12823992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-induced opacification and loss of protein in the organ-cultured bovine lens.
    Marcantonio JM; Duncan G; Rink H
    Exp Eye Res; 1986 Jun; 42(6):617-30. PubMed ID: 3087764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes.
    Raguz M; Mainali L; O'Brien WJ; Subczynski WK
    Exp Eye Res; 2015 Nov; 140():179-186. PubMed ID: 26384651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of gap junctions and square array junctions in the mammalian lens.
    Costello MJ; McIntosh TJ; Robertson JD
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):975-89. PubMed ID: 2722452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloid osmotic pressure of steer crystallins: implications for the origin of the refractive index gradient and transparency of the lens.
    Magid AD; Kenworthy AK; McIntosh TJ
    Exp Eye Res; 1992 Oct; 55(4):615-27. PubMed ID: 1483507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related and distributional changes in the trypsin inhibitor activity of bovine lens.
    Srivastava OP; Ortwerth BJ
    Exp Eye Res; 1983 May; 36(5):695-709. PubMed ID: 6852141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantitative microprobe analysis of elements in cortical and nuclear cells of the calf lens.
    Neuringer JR; Clark JI; Benedek GB
    Anat Rec; 1985 Mar; 211(3):329-37. PubMed ID: 3887991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens.
    Fecondo JV; Augusteyn RC
    Exp Eye Res; 1983 Jan; 36(1):15-23. PubMed ID: 6825728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of aspirin and vitamin E on phase separation in calf lens homogenate.
    Eccarius S; Clark JI
    Ophthalmic Res; 1987; 19(2):65-71. PubMed ID: 3614840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of Src family kinases in cortical cataract formation.
    Zhou J; Menko AS
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2293-300. PubMed ID: 12091430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.
    Raguz M; Mainali L; O'Brien WJ; Subczynski WK
    Exp Eye Res; 2015 Mar; 132():78-90. PubMed ID: 25617680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers.
    Rujoi M; Jin J; Borchman D; Tang D; Yappert MC
    Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1634-42. PubMed ID: 12657603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyridine nucleotides in normal and cataractous human lenses.
    Stewart A; Augusteyn RC
    Exp Eye Res; 1984 Sep; 39(3):307-15. PubMed ID: 6499953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes.
    Jacob RF; Cenedella RJ; Mason RP
    J Biol Chem; 1999 Oct; 274(44):31613-8. PubMed ID: 10531368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yellowing of the human lens: nuclear and cortical contributions.
    Mellerio J
    Vision Res; 1987; 27(9):1581-7. PubMed ID: 3445490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute effect of ethanol on lens cation homeostasis.
    Zeng J; Borchman D; Paterson CA
    Alcohol; 1998 Oct; 16(3):189-93. PubMed ID: 9744848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.