These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3181357)

  • 1. Influence of one-week hindlimb suspension and intermittent high load exercise on rat muscles.
    Herbert ME; Roy RR; Edgerton VR
    Exp Neurol; 1988 Nov; 102(2):190-8. PubMed ID: 3181357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of 7 days of hindlimb suspension and intermittent weight support on rat muscle mechanical properties.
    Pierotti DJ; Roy RR; Flores V; Edgerton VR
    Aviat Space Environ Med; 1990 Mar; 61(3):205-10. PubMed ID: 2317173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effects of growth hormone and exercise on muscle mass in suspended rats.
    Grindeland RE; Roy RR; Edgerton VR; Grossman EJ; Mukku VR; Jiang B; Pierotti DJ; Rudolph I
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R316-22. PubMed ID: 8048638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of rat skeletal muscle after hind limb suspension.
    Winiarski AM; Roy RR; Alford EK; Chiang PC; Edgerton VR
    Exp Neurol; 1987 Jun; 96(3):650-60. PubMed ID: 3582550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise effects on the size and metabolic properties of soleus fibers in hindlimb-suspended rats.
    Graham SC; Roy RR; West SP; Thomason D; Baldwin KM
    Aviat Space Environ Med; 1989 Mar; 60(3):226-34. PubMed ID: 2712801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effects of Progressive Resistance Exercise on Recovery Rate of Bone and Muscle in a Rodent Model of Hindlimb Suspension.
    Song H; Cho S; Lee HY; Lee H; Song W
    Front Physiol; 2018; 9():1085. PubMed ID: 30150940
    [No Abstract]   [Full Text] [Related]  

  • 7. A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension.
    Fluckey JD; Dupont-Versteegden EE; Montague DC; Knox M; Tesch P; Peterson CA; Gaddy-Kurten D
    Acta Physiol Scand; 2002 Dec; 176(4):293-300. PubMed ID: 12444935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.
    Kaneguchi A; Ozawa J; Kawamata S; Kurose T; Yamaoka K
    BMC Musculoskelet Disord; 2014 Sep; 15():315. PubMed ID: 25260531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Counteracting effects of intermittent head-up tilt on simulated-weightlessness induced atrophy of anti-gravity muscles].
    Liu C; Zhang LF; Zhang LN; Ni HY; Zhang YQ; Sun L
    Space Med Med Eng (Beijing); 2000 Dec; 13(6):391-5. PubMed ID: 11767780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and metabolic properties of fibers in rat fast-twitch muscles after hindlimb suspension.
    Roy RR; Bello MA; Bouissou P; Edgerton VR
    J Appl Physiol (1985); 1987 Jun; 62(6):2348-57. PubMed ID: 2956235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats.
    Tischler ME; Henriksen EJ; Munoz KA; Stump CS; Woodman CR; Kirby CR
    J Appl Physiol (1985); 1993 May; 74(5):2161-5. PubMed ID: 8335544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of single hindlimb support during simulated weightlessness in the rat.
    Stump CS; Overton JM; Tipton CM
    J Appl Physiol (1985); 1990 Feb; 68(2):627-34. PubMed ID: 2318773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats.
    Musacchia XJ; Steffen JM; Fell RD; Dombrowski MJ
    J Appl Physiol (1985); 1990 Dec; 69(6):2248-53. PubMed ID: 2077023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance exercise and growth hormone as countermeasures for skeletal muscle atrophy in hindlimb-suspended rats.
    Linderman JK; Gosselink KL; Booth FW; Mukku VR; Grindeland RE
    Am J Physiol; 1994 Aug; 267(2 Pt 2):R365-71. PubMed ID: 8067444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical, morphological and biochemical adaptations of bone and muscle to hindlimb suspension and exercise.
    Shaw SR; Zernicke RF; Vailas AC; DeLuna D; Thomason DB; Baldwin KM
    J Biomech; 1987; 20(3):225-34. PubMed ID: 3584148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle glucose uptake in the rat after suspension with single hindlimb weight bearing.
    Stump CS; Woodman CR; Fregosi RF; Tipton CM
    J Appl Physiol (1985); 1993 May; 74(5):2072-8. PubMed ID: 8335532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of myofibrillar protein synthesis in hindlimb suspended rats by resistance exercise and growth hormone.
    Linderman JK; Whittall JB; Gosselink KL; Wang TJ; Mukku VR; Booth FW; Grindeland RE
    Life Sci; 1995; 57(8):755-62. PubMed ID: 7637549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic exercise as a countermeasure for microgravity-induced bone loss and muscle atrophy in a rat hindlimb suspension model.
    Norman TL; Bradley-Popovich G; Clovis N; Cutlip RG; Bryner RW
    Aviat Space Environ Med; 2000 Jun; 71(6):593-8. PubMed ID: 10870818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hind limb suspension.
    Alford EK; Roy RR; Hodgson JA; Edgerton VR
    Exp Neurol; 1987 Jun; 96(3):635-49. PubMed ID: 3582549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of insulin and exercise on rat hindlimb muscles after simulated microgravity.
    Stump CS; Balon TW; Tipton CM
    J Appl Physiol (1985); 1992 Nov; 73(5):2044-53. PubMed ID: 1474084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.