BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31813767)

  • 1. Mechanical regulation of formin-dependent actin polymerization.
    Le S; Yu M; Bershadsky A; Yan J
    Semin Cell Dev Biol; 2020 Jun; 102():73-80. PubMed ID: 31813767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization.
    Watanabe N; Tohyama K; Yamashiro S
    Biochem Biophys Res Commun; 2018 Nov; 506(2):323-329. PubMed ID: 30309655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Mechanical Stimuli on Profilin- and Formin-Mediated Actin Polymerization.
    Yu M; Le S; Efremov AK; Zeng X; Bershadsky A; Yan J
    Nano Lett; 2018 Aug; 18(8):5239-5247. PubMed ID: 29976069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair.
    Valencia FR; Sandoval E; Du J; Iu E; Liu J; Plotnikov SV
    Dev Cell; 2021 Dec; 56(23):3288-3302.e5. PubMed ID: 34822787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mDia1 senses both force and torque during F-actin filament polymerization.
    Yu M; Yuan X; Lu C; Le S; Kawamura R; Efremov AK; Zhao Z; Kozlov MM; Sheetz M; Bershadsky A; Yan J
    Nat Commun; 2017 Nov; 8(1):1650. PubMed ID: 29162803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein.
    Ulrichs H; Gaska I; Shekhar S
    Nat Commun; 2023 Jul; 14(1):3981. PubMed ID: 37414761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular condensation and mechanoregulation of plant class I formin, an integrin-like actin nucleator.
    Ma Z; Zhu K; Gao YG; Tan SM; Miao Y
    FEBS J; 2023 Jul; 290(13):3336-3354. PubMed ID: 35816016
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Christensen JR; Craig EW; Glista MJ; Mueller DM; Li Y; Sees JA; Huang S; Suarez C; Mets LJ; Kovar DR; Avasthi P
    Mol Biol Cell; 2019 Dec; 30(26):3123-3135. PubMed ID: 31664873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processive capping by formin suggests a force-driven mechanism of actin polymerization.
    Kozlov MM; Bershadsky AD
    J Cell Biol; 2004 Dec; 167(6):1011-7. PubMed ID: 15596547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometrical Constraints Greatly Hinder Formin mDia1 Activity.
    Suzuki EL; Chikireddy J; Dmitrieff S; Guichard B; Romet-Lemonne G; Jégou A
    Nano Lett; 2020 Jan; 20(1):22-32. PubMed ID: 31797667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
    Kovar DR; Pollard TD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14725-30. PubMed ID: 15377785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex.
    Li Z; Lee H; Eskin SG; Ono S; Zhu C; McIntire LV
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1509-1521. PubMed ID: 31965350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of formin processivity by profilin and mechanical tension.
    Cao L; Kerleau M; Suzuki EL; Wioland H; Jouet S; Guichard B; Lenz M; Romet-Lemonne G; Jegou A
    Elife; 2018 May; 7():. PubMed ID: 29799413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of formin-mediated actin polymerization predicts homologue-dependent mechanosensitivity.
    Bryant D; Clemens L; Allard J
    Cytoskeleton (Hoboken); 2017 Jan; 74(1):29-39. PubMed ID: 27792274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational movement of formins evaluated by using single-molecule fluorescence polarization.
    Mizuno H; Watanabe N
    Methods Enzymol; 2014; 540():73-94. PubMed ID: 24630102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly.
    Rizvi SA; Neidt EM; Cui J; Feiger Z; Skau CT; Gardel ML; Kozmin SA; Kovar DR
    Chem Biol; 2009 Nov; 16(11):1158-68. PubMed ID: 19942139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly.
    Skau CT; Plotnikov SV; Doyle AD; Waterman CM
    Proc Natl Acad Sci U S A; 2015 May; 112(19):E2447-56. PubMed ID: 25918420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly and mechanosensory function of focal adhesions: experiments and models.
    Bershadsky AD; Ballestrem C; Carramusa L; Zilberman Y; Gilquin B; Khochbin S; Alexandrova AY; Verkhovsky AB; Shemesh T; Kozlov MM
    Eur J Cell Biol; 2006 Apr; 85(3-4):165-73. PubMed ID: 16360240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2.
    Zhang L; Smertenko T; Fahy D; Koteyeva N; Moroz N; Kuchařová A; Novák D; Manoilov E; Smertenko P; Galva C; Šamaj J; Kostyukova AS; Sedbrook JC; Smertenko A
    Plant Physiol; 2021 Jun; 186(2):945-963. PubMed ID: 33620500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation limits the lengths of actin filaments assembled by formin.
    Zweifel ME; Sherer LA; Mahanta B; Courtemanche N
    Biophys J; 2021 Oct; 120(20):4442-4456. PubMed ID: 34506773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.