BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31813821)

  • 1. Activation of Oxidative Stress Response in Cancer Generates a Druggable Dependency on Exogenous Non-essential Amino Acids.
    LeBoeuf SE; Wu WL; Karakousi TR; Karadal B; Jackson SR; Davidson SM; Wong KK; Koralov SB; Sayin VI; Papagiannakopoulos T
    Cell Metab; 2020 Feb; 31(2):339-350.e4. PubMed ID: 31813821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in
    Galan-Cobo A; Sitthideatphaiboon P; Qu X; Poteete A; Pisegna MA; Tong P; Chen PH; Boroughs LK; Rodriguez MLM; Zhang W; Parlati F; Wang J; Gandhi V; Skoulidis F; DeBerardinis RJ; Minna JD; Heymach JV
    Cancer Res; 2019 Jul; 79(13):3251-3267. PubMed ID: 31040157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress.
    Habib E; Linher-Melville K; Lin HX; Singh G
    Redox Biol; 2015 Aug; 5():33-42. PubMed ID: 25827424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microenvironmental Activation of Nrf2 Restricts the Progression of Nrf2-Activated Malignant Tumors.
    Hayashi M; Kuga A; Suzuki M; Panda H; Kitamura H; Motohashi H; Yamamoto M
    Cancer Res; 2020 Aug; 80(16):3331-3344. PubMed ID: 32636316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf2 Activation Sensitizes K-Ras Mutant Pancreatic Cancer Cells to Glutaminase Inhibition.
    Hamada S; Matsumoto R; Tanaka Y; Taguchi K; Yamamoto M; Masamune A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis.
    Romero R; Sayin VI; Davidson SM; Bauer MR; Singh SX; LeBoeuf SE; Karakousi TR; Ellis DC; Bhutkar A; Sánchez-Rivera FJ; Subbaraj L; Martinez B; Bronson RT; Prigge JR; Schmidt EE; Thomas CJ; Goparaju C; Davies A; Dolgalev I; Heguy A; Allaj V; Poirier JT; Moreira AL; Rudin CM; Pass HI; Vander Heiden MG; Jacks T; Papagiannakopoulos T
    Nat Med; 2017 Nov; 23(11):1362-1368. PubMed ID: 28967920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer.
    Sayin VI; LeBoeuf SE; Singh SX; Davidson SM; Biancur D; Guzelhan BS; Alvarez SW; Wu WL; Karakousi TR; Zavitsanou AM; Ubriaco J; Muir A; Karagiannis D; Morris PJ; Thomas CJ; Possemato R; Vander Heiden MG; Papagiannakopoulos T
    Elife; 2017 Oct; 6():. PubMed ID: 28967864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment.
    Best SA; De Souza DP; Kersbergen A; Policheni AN; Dayalan S; Tull D; Rathi V; Gray DH; Ritchie ME; McConville MJ; Sutherland KD
    Cell Metab; 2018 Apr; 27(4):935-943.e4. PubMed ID: 29526543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer.
    Best SA; Gubser PM; Sethumadhavan S; Kersbergen A; Negrón Abril YL; Goldford J; Sellers K; Abeysekera W; Garnham AL; McDonald JA; Weeden CE; Anderson D; Pirman D; Roddy TP; Creek DJ; Kallies A; Kingsbury G; Sutherland KD
    Cell Metab; 2022 Jun; 34(6):874-887.e6. PubMed ID: 35504291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells.
    Georgiou-Siafis SK; Tsiftsoglou AS
    Biochem Pharmacol; 2020 May; 175():113900. PubMed ID: 32156661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger.
    Wang J; Shanmugam A; Markand S; Zorrilla E; Ganapathy V; Smith SB
    Free Radic Biol Med; 2015 Sep; 86():25-36. PubMed ID: 25920363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the KEAP1-NFE2L2 Pathway Define a Molecular Subset of Rapidly Progressing Lung Adenocarcinoma.
    Goeman F; De Nicola F; Scalera S; Sperati F; Gallo E; Ciuffreda L; Pallocca M; Pizzuti L; Krasniqi E; Barchiesi G; Vici P; Barba M; Buglioni S; Casini B; Visca P; Pescarmona E; Mazzotta M; De Maria R; Fanciulli M; Ciliberto G; Maugeri-Saccà M
    J Thorac Oncol; 2019 Nov; 14(11):1924-1934. PubMed ID: 31323387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nestin regulates cellular redox homeostasis in lung cancer through the Keap1-Nrf2 feedback loop.
    Wang J; Lu Q; Cai J; Wang Y; Lai X; Qiu Y; Huang Y; Ke Q; Zhang Y; Guan Y; Wu H; Wang Y; Liu X; Shi Y; Zhang K; Wang M; Peng Xiang A
    Nat Commun; 2019 Nov; 10(1):5043. PubMed ID: 31695040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung.
    Zhang B; Ma Z; Tan B; Lin N
    Expert Opin Ther Targets; 2019 Mar; 23(3):241-250. PubMed ID: 30556750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma.
    Best SA; Ding S; Kersbergen A; Dong X; Song JY; Xie Y; Reljic B; Li K; Vince JE; Rathi V; Wright GM; Ritchie ME; Sutherland KD
    Nat Commun; 2019 Sep; 10(1):4190. PubMed ID: 31519898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keap1-Nrf2 Interaction Suppresses Cell Motility in Lung Adenocarcinomas by Targeting the S100P Protein.
    Chien MH; Lee WJ; Hsieh FK; Li CF; Cheng TY; Wang MY; Chen JS; Chow JM; Jan YH; Hsiao M; Hua KT; Kuo ML
    Clin Cancer Res; 2015 Oct; 21(20):4719-32. PubMed ID: 26078391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth.
    Ohta T; Iijima K; Miyamoto M; Nakahara I; Tanaka H; Ohtsuji M; Suzuki T; Kobayashi A; Yokota J; Sakiyama T; Shibata T; Yamamoto M; Hirohashi S
    Cancer Res; 2008 Mar; 68(5):1303-9. PubMed ID: 18316592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp.
    Hori R; Yamaguchi K; Sato H; Watanabe M; Tsutsumi K; Iwamoto S; Abe M; Onodera H; Nakamura S; Nakai R
    Cancer Med; 2019 Mar; 8(3):1157-1168. PubMed ID: 30735010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson's disease animal model.
    Kim S; Indu Viswanath AN; Park JH; Lee HE; Park AY; Choi JW; Kim HJ; Londhe AM; Jang BK; Lee J; Hwang H; Lim SM; Pae AN; Park KD
    Neuropharmacology; 2020 May; 167():107989. PubMed ID: 32032607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance.
    Zavitsanou AM; Pillai R; Hao Y; Wu WL; Bartnicki E; Karakousi T; Rajalingam S; Herrera A; Karatza A; Rashidfarrokhi A; Solis S; Ciampricotti M; Yeaton AH; Ivanova E; Wohlhieter CA; Buus TB; Hayashi M; Karadal-Ferrena B; Pass HI; Poirier JT; Rudin CM; Wong KK; Moreira AL; Khanna KM; Tsirigos A; Papagiannakopoulos T; Koralov SB
    Cell Rep; 2023 Nov; 42(11):113295. PubMed ID: 37889752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.