BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31813974)

  • 1. The Ventral Striatum is a Key Node for Functional Recovery of Finger Dexterity After Spinal Cord Injury in Monkeys.
    Suzuki M; Onoe K; Sawada M; Takahashi N; Higo N; Murata Y; Tsukada H; Isa T; Onoe H; Nishimura Y
    Cereb Cortex; 2020 May; 30(5):3259-3270. PubMed ID: 31813974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of the nucleus accumbens in motor control during recovery after spinal cord injury.
    Sawada M; Kato K; Kunieda T; Mikuni N; Miyamoto S; Onoe H; Isa T; Nishimura Y
    Science; 2015 Oct; 350(6256):98-101. PubMed ID: 26430122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury.
    Nishimura Y; Onoe H; Morichika Y; Perfiliev S; Tsukada H; Isa T
    Science; 2007 Nov; 318(5853):1150-5. PubMed ID: 18006750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys.
    Nishimura Y; Isa T
    Exp Neurol; 2012 May; 235(1):152-61. PubMed ID: 21884698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys.
    Murata Y; Higo N; Hayashi T; Nishimura Y; Sugiyama Y; Oishi T; Tsukada H; Isa T; Onoe H
    J Neurosci; 2015 Jan; 35(1):84-95. PubMed ID: 25568105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skilled digit movements in feline and primate--recovery after selective spinal cord lesions.
    Pettersson LG; Alstermark B; Blagovechtchenski E; Isa T; Sasaski S
    Acta Physiol (Oxf); 2007 Feb; 189(2):141-54. PubMed ID: 17250565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Reorganization of Motor Networks During Recovery from Partial Spinal Cord Injury in Monkeys.
    Chao ZC; Sawada M; Isa T; Nishimura Y
    Cereb Cortex; 2019 Jul; 29(7):3059-3073. PubMed ID: 30060105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury.
    Baker SN; Perez MA
    J Neurosci; 2017 Oct; 37(40):9778-9784. PubMed ID: 28871033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural substrates for the motivational regulation of motor recovery after spinal-cord injury.
    Nishimura Y; Onoe H; Onoe K; Morichika Y; Tsukada H; Isa T
    PLoS One; 2011; 6(9):e24854. PubMed ID: 21969864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury.
    Hou J; Xiang Z; Yan R; Zhao M; Wu Y; Zhong J; Guo L; Li H; Wang J; Wu J; Sun T; Liu H
    Hum Brain Mapp; 2016 Jun; 37(6):2195-209. PubMed ID: 26936834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat.
    Brown AR; Martinez M
    Exp Neurol; 2021 Sep; 343():113775. PubMed ID: 34081986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuronal mechanism of functional recovery of dexterous finger movements after lesion of the corticospinal tract--studies in a non-human primate model].
    Nishimura Y; Isa T
    Brain Nerve; 2007 May; 59(5):511-20. PubMed ID: 17533977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys.
    Murata Y; Higo N; Oishi T; Yamashita A; Matsuda K; Hayashi M; Yamane S
    J Neurophysiol; 2008 Feb; 99(2):773-86. PubMed ID: 18094104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Brain Is Needed to Cure Spinal Cord Injury.
    Isa T
    Trends Neurosci; 2017 Oct; 40(10):625-636. PubMed ID: 28893422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity for recovery after partial spinal cord injury – hierarchical organization.
    Isa T; Nishimura Y
    Neurosci Res; 2014 Jan; 78():3-8. PubMed ID: 24512702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of primary motor cortex in the control of manual dexterity assessed via sequential bilateral lesion in the adult macaque monkey: A case study.
    Savidan J; Kaeser M; Belhaj-Saïf A; Schmidlin E; Rouiller EM
    Neuroscience; 2017 Aug; 357():303-324. PubMed ID: 28629845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the effect of continuous theta burst stimulation of the motor cortex on manual dexterity in non-human primates in a direct comparison with invasive intracortical pharmacological inactivation.
    Roux C; Kaeser M; Savidan J; Fregosi M; Rouiller EM; Schmidlin E
    Eur J Neurosci; 2019 Nov; 50(10):3599-3613. PubMed ID: 31410900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory changes at the cerebral cortical level after spinal cord injury.
    Nishimura Y; Isa T
    Neuroscientist; 2009 Oct; 15(5):436-44. PubMed ID: 19826168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys.
    Rao JS; Zhao C; Wei RH; Feng T; Bao SS; Zhao W; Tian Z; Liu Z; Yang ZY; Li XG
    Ann Med; 2022 Dec; 54(1):1867-1883. PubMed ID: 35792748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuneate nucleus reorganization following cervical dorsal rhizotomy in the macaque monkey: its role in the recovery of manual dexterity.
    Darian-Smith C; Ciferri M
    J Comp Neurol; 2006 Oct; 498(4):552-65. PubMed ID: 16874805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.