These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31814106)

  • 1. Engineering of membrane phospholipid component enhances salt stress tolerance in Saccharomyces cerevisiae.
    Yin N; Zhu G; Luo Q; Liu J; Chen X; Liu L
    Biotechnol Bioeng; 2020 Mar; 117(3):710-720. PubMed ID: 31814106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production.
    Liu Y; Liu Q; Krivoruchko A; Khoomrung S; Nielsen J
    Nat Chem Biol; 2020 Feb; 16(2):197-205. PubMed ID: 31844304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast
    Han GS; Carman GM
    J Biol Chem; 2017 Aug; 292(32):13230-13242. PubMed ID: 28673963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering membrane asymmetry to increase medium-chain fatty acid tolerance in Saccharomyces cerevisiae.
    Liu H; Yuan W; Zhou P; Liang G; Gao C; Guo L; Hu G; Song W; Wu J; Chen X; Liu L
    Biotechnol Bioeng; 2022 Jan; 119(1):277-286. PubMed ID: 34708879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase.
    Carman GM; Han GS
    Adv Biol Regul; 2018 Jan; 67():49-58. PubMed ID: 28827025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion.
    Carman GM; Han GS
    Biochim Biophys Acta; 2007 Mar; 1771(3):322-30. PubMed ID: 16807089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Park WK; Yang JW; Kim HS
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of YJL218W reduces salt tolerance of Saccharomyces cerevisiae.
    Li M; Zhang Y; Deng J; Wang H; Ma J; Wang W; Lyu L
    J Basic Microbiol; 2022 Aug; 62(8):930-936. PubMed ID: 35689329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of the yeast structural gene for the membrane-associated enzyme phosphatidylserine synthase.
    Letts VA; Klig LS; Bae-Lee M; Carman GM; Henry SA
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7279-83. PubMed ID: 6316353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering.
    Tekarslan-Sahin SH; Alkim C; Sezgin T
    Bosn J Basic Med Sci; 2018 Feb; 18(1):55-65. PubMed ID: 28954203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis Reveals that MAPK Signaling Pathway Mediates Salt Tolerance of YMR253C ORF in Saccharomyces cerevisiae.
    Zhang Y; Li M; Deng J; Bai C; Ma J; Lyu L
    Curr Microbiol; 2022 Mar; 79(5):126. PubMed ID: 35278139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pel1 mutant of Saccharomyces cerevisiae is deficient in cardiolipin and does not survive the disruption of the CHO1 gene encoding phosphatidylserine synthase.
    Janitor M; Obernauerová M; Kohlwein SD; Subík J
    FEMS Microbiol Lett; 1996 Jun; 140(1):43-7. PubMed ID: 8666200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae.
    Su Y; Shao W; Zhang A; Zhang W
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33620449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediator Engineering of
    Qi Y; Xu N; Li Z; Wang J; Meng X; Gao C; Chen J; Chen W; Chen X; Liu L
    Appl Environ Microbiol; 2022 Apr; 88(8):e0162721. PubMed ID: 35369708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc.
    Iwanyshyn WM; Han GS; Carman GM
    J Biol Chem; 2004 May; 279(21):21976-83. PubMed ID: 15028711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a novel plasma membrane intrinsic protein gene, LcPIP1, in Leymus chinensis that enhances salt stress tolerance in Saccharomyces cerevisiae.
    Ma P; Liu J
    Appl Biochem Biotechnol; 2012 Jan; 166(2):479-85. PubMed ID: 22072142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae.
    Bailis AM; Lopes JM; Kohlwein SD; Henry SA
    Nucleic Acids Res; 1992 Mar; 20(6):1411-8. PubMed ID: 1313970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance.
    Petrezselyova S; Zahradka J; Sychrova H
    Fungal Biol; 2010; 114(2-3):144-50. PubMed ID: 20960970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.
    Matsushika A; Suzuki T; Goshima T; Hoshino T
    J Biosci Bioeng; 2017 Aug; 124(2):164-170. PubMed ID: 28476241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.