These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 31814266)
1. The microbially driven formation of siderite in salt marsh sediments. Lin CY; Turchyn AV; Krylov A; Antler G Geobiology; 2020 Mar; 18(2):207-224. PubMed ID: 31814266 [TBL] [Abstract][Full Text] [Related]
2. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois. Cotroneo S; Schiffbauer JD; McCoy VE; Wortmann UG; Darroch SA; Peng Y; Laflamme M Geobiology; 2016 Nov; 14(6):543-555. PubMed ID: 27422851 [TBL] [Abstract][Full Text] [Related]
3. Characterization and Polgári M; Bérczi S; Horiuchi K; Matsuzaki H; Kovács T; Józsa S; Bendő Z; Fintor K; Fekete J; Homonnay Z; Kuzmann E; Gucsik A; Gyollai I; Kovács J; Dódony I J Environ Radioact; 2017 Jul; 173():58-69. PubMed ID: 28011110 [TBL] [Abstract][Full Text] [Related]
4. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Beukes NJ; Klein C; Kaufman AJ; Hayes JM Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478 [TBL] [Abstract][Full Text] [Related]
6. Life and Liesegang: Outcrop-Scale Microbially Induced Diagenetic Structures and Geochemical Self-Organization Phenomena Produced by Oxidation of Reduced Iron. Kettler RM; Loope DB; Weber KA; Niles PB Astrobiology; 2015 Aug; 15(8):616-36. PubMed ID: 26274864 [TBL] [Abstract][Full Text] [Related]
7. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure. Shen X; Dong W; Wan Y; Feng K; Liu Y; Wei Y J Environ Manage; 2021 Dec; 299():113648. PubMed ID: 34479148 [TBL] [Abstract][Full Text] [Related]
8. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Köhler I; Konhauser KO; Papineau D; Bekker A; Kappler A Nat Commun; 2013; 4():1741. PubMed ID: 23612282 [TBL] [Abstract][Full Text] [Related]
9. Formation of large carbonate concretions in black cherts in the Gufeng Formation (Guadalupian) at Enshi, South China. Wei H; Tang Z; Qiu Z; Yan D; Bai M Geobiology; 2020 Jan; 18(1):14-30. PubMed ID: 31496070 [TBL] [Abstract][Full Text] [Related]
10. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Sánchez-Román M; Fernández-Remolar D; Amils R; Sánchez-Navas A; Schmid T; San Martin-Uriz P; Rodríguez N; McKenzie JA; Vasconcelos C Sci Rep; 2014 Apr; 4():4767. PubMed ID: 24755961 [TBL] [Abstract][Full Text] [Related]
11. Promotion and nucleation of carbonate precipitation during microbial iron reduction. Zeng Z; Tice MM Geobiology; 2014 Jul; 12(4):362-71. PubMed ID: 24862734 [TBL] [Abstract][Full Text] [Related]
12. Microbially Induced Formation of Fe Carbonates by Metal-Reducing Bacteria Enriched from a CO₂ Repository Candidate Site. Kang S; Roh Y J Nanosci Nanotechnol; 2018 Feb; 18(2):1137-1140. PubMed ID: 29448546 [TBL] [Abstract][Full Text] [Related]
13. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions. Kwon MJ; O'Loughlin EJ; Boyanov MI; Brulc JM; Johnston ER; Kemner KM; Antonopoulos DA PLoS One; 2016; 11(1):e0146689. PubMed ID: 26800443 [TBL] [Abstract][Full Text] [Related]
14. Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Fortney NW; Beard BL; Hutchings JA; Shields MR; Bianchi TS; Boyd ES; Johnson CM; Roden EE Astrobiology; 2021 Jan; 21(1):83-102. PubMed ID: 32580560 [TBL] [Abstract][Full Text] [Related]
15. Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Sracek O; Berg M; Müller B Environ Sci Pollut Res Int; 2018 Jun; 25(16):15954-15961. PubMed ID: 29589241 [TBL] [Abstract][Full Text] [Related]
16. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability. Banning A; Rüde TR; Dölling B J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400 [TBL] [Abstract][Full Text] [Related]
17. Co-existing siderite alleviates the Fe(II) oxidation-induced inactivation of Fe(III)-reducing bacteria. Huang Y; Zhao S; Liu H; Chen R; Zhao L; Liu S Sci Total Environ; 2021 Aug; 781():146489. PubMed ID: 33798884 [TBL] [Abstract][Full Text] [Related]
18. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation. Zeng Z; Tice MM Astrobiology; 2018 Jan; 18(1):28-36. PubMed ID: 29265883 [TBL] [Abstract][Full Text] [Related]
19. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
20. Determination of chemical composition of siderite in concretions by wavelength-dispersive X-ray spectrometry following selective dissolution. Sitko R; Zawisza B; Krzykawski T; Malicka E Talanta; 2009 Jan; 77(3):1105-10. PubMed ID: 19064098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]