BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 318144)

  • 1. Hexose monophosphate shunt dehydrogenases in the sea urchin and the frog: comparison of some functional properties of the enzymes in vitro.
    Broyles RH; Strittmatter CF
    Comp Biochem Physiol B; 1977; 57(3):249-55. PubMed ID: 318144
    [No Abstract]   [Full Text] [Related]  

  • 2. Hexose monophosphate shunt dehydrogenases in the developing frog.
    Broyles RH; Strittmatter CF
    Comp Biochem Physiol B; 1973 Mar; 44(3):667-76. PubMed ID: 4541166
    [No Abstract]   [Full Text] [Related]  

  • 3. Hexose monophosphate shunt dehydrogenases during sea urchin development.
    Broyles RH; Strittmatter CF
    Exp Cell Res; 1971 Aug; 67(2):471-4. PubMed ID: 5107074
    [No Abstract]   [Full Text] [Related]  

  • 4. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes.
    Antonenkov VD
    Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dehydrogenases of the pentose cycle in rat liver peroxisomes].
    Antonenkov VD; Panchenko LF
    Biokhimiia; 1984 Jul; 49(7):1159-65. PubMed ID: 6477984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of lipogenic and lipolytic conditions on the pentose phosphate pathway dehydrogenases in rat-kidney-cortex.
    Peragon J; Aranda F; Garcia-Salguero L; Barroso JB; Amores MV; Lupiañez JA
    Arch Int Physiol Biochim; 1990 Oct; 98(5):283-9. PubMed ID: 1708996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The hexose monophosphate shunt in the liver of premature infants (glucose-6-phosphate-dehydrogenase and 6-phosphogluconate-dehydrogenase activities)].
    Cordone G; Gemme G; Moscatelli P; Fregonese B
    Minerva Pediatr; 1968 Jul; 20(29):1479-83. PubMed ID: 5744559
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex.
    Corpas FJ; García-Salguero L; Barroso JB; Aranda F; Lupiáñez JA
    Mol Cell Biochem; 1995 Mar; 144(2):97-104. PubMed ID: 7623792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term adaptive response to dietary protein of hexose monophosphate shunt dehydrogenases in rat kidney tubules.
    Peragón J; Aranda F; García-Salguero L; Vargas AM; Lupiáñez JA
    Cell Biochem Funct; 1990 Jan; 8(1):11-7. PubMed ID: 2340628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the pentose phosphate cycle in bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Rev Esp Fisiol; 1988 Dec; 44(4):433-9. PubMed ID: 3244891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular biochemistry of glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities.
    Chayen J; Howat DW; Bitensky L
    Cell Biochem Funct; 1986 Oct; 4(4):249-53. PubMed ID: 3539387
    [No Abstract]   [Full Text] [Related]  

  • 12. Pentose monophosphate shunt dehydrogenases and fatty acid synthesis in late rat pregnancy.
    Herrera E; Knopp RA
    Experientia; 1972 Jun; 28(6):646-7. PubMed ID: 5045156
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparative profiles of the hexose monophosphate dehydrogenases in rat tissues over the lactation cycle.
    Martins RN; Hartmann PE; Stokes GB
    Aust J Biol Sci; 1985; 38(3):295-303. PubMed ID: 3911929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the pentose phosphate pathway in metabolism of Drosophila melanogaster elucidated by mutations affecting glucose 6-phosphate and 6-phosphogluconate dehydrogenases.
    Gvozdev VA; Gerasimova TI; Kogan GL; Braslavskaya OYu
    FEBS Lett; 1976 Apr; 64(1):85-8. PubMed ID: 817945
    [No Abstract]   [Full Text] [Related]  

  • 16. [Purification and properties of glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Pseudomonas oleovorans].
    Sokolov AP; Luchin SV; Trotsenko IuA
    Biokhimiia; 1980 Aug; 45(8):1371-8. PubMed ID: 7236789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of liver and brain hexose monophosphate dehydrogenases by insulin and dietary intake in the female rat.
    Martins RN; Stokes GB; Masters CL
    Mol Cell Biochem; 1986 May; 70(2):169-75. PubMed ID: 3523210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chlorpromazine on the respiration and hexose monophosphate dehydrogenases of gram-negative bacteria.
    Orlowski M; Goldman M
    Can J Microbiol; 1975 Mar; 21(3):415-7. PubMed ID: 1090352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose metabolism in the mucosa of the small intestine. Enzymes of the pentose phosphate pathway.
    Srivastava LM; Hübscher G
    Biochem J; 1966 Oct; 101(1):48-55. PubMed ID: 4382012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.