BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31814596)

  • 1. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering.
    Jana S; Franchi F; Lerman A
    Biomed Mater; 2019 Dec; 15(1):015004. PubMed ID: 31814596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet.
    Jana S; Lerman A
    Cell Tissue Res; 2020 Nov; 382(2):321-335. PubMed ID: 32676860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking morphologies of heart valve leaflet.
    Jana S; Lerman A
    Acta Biomater; 2019 Feb; 85():142-156. PubMed ID: 30528607
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Jana S; Lerman A
    Regen Med; 2020 Jan; 15(1):1177-1192. PubMed ID: 32100626
    [No Abstract]   [Full Text] [Related]  

  • 5. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics.
    Jana S; Morse D; Lerman A
    ACS Appl Bio Mater; 2021 Nov; 4(11):7836-7847. PubMed ID: 35006765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrous heart valve leaflet substrate with native-mimicked morphology.
    Jana S; Franchi F; Lerman A
    Appl Mater Today; 2021 Sep; 24():. PubMed ID: 34485682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering.
    Hobson CM; Amoroso NJ; Amini R; Ungchusri E; Hong Y; D'Amore A; Sacks MS; Wagner WR
    J Biomed Mater Res A; 2015 Sep; 103(9):3101-6. PubMed ID: 25771748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep.
    Syedain Z; Reimer J; Schmidt J; Lahti M; Berry J; Bianco R; Tranquillo RT
    Biomaterials; 2015 Dec; 73():175-84. PubMed ID: 26409002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-engineered valves with commissural alignment.
    Neidert MR; Tranquillo RT
    Tissue Eng; 2006 Apr; 12(4):891-903. PubMed ID: 16674301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.
    Loerakker S; Argento G; Oomens CW; Baaijens FP
    J Biomech; 2013 Jul; 46(11):1792-800. PubMed ID: 23786664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing?
    Parvin Nejad S; Blaser MC; Santerre JP; Caldarone CA; Simmons CA
    Adv Drug Deliv Rev; 2016 Jan; 96():161-75. PubMed ID: 26555371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study.
    Hong H; Dong N; Shi J; Chen S; Guo C; Hu P; Qi H
    Artif Organs; 2009 Jul; 33(7):554-8. PubMed ID: 19566733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-engineered mitral valve: morphology and biomechanics †.
    Iablonskii P; Cebotari S; Tudorache I; Granados M; Morticelli L; Goecke T; Klein N; Korossis S; Hilfiker A; Haverich A
    Interact Cardiovasc Thorac Surg; 2015 Jun; 20(6):712-9; discussion 719. PubMed ID: 25762708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.
    Jahnavi S; Saravanan U; Arthi N; Bhuvaneshwar GS; Kumary TV; Rajan S; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():59-71. PubMed ID: 28183649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering.
    Jana S; Bhagia A; Lerman A
    Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porcine pulmonary valve decellularization with NaOH-based vs detergent process: preliminary in vitro and in vivo assessments.
    van Steenberghe M; Schubert T; Gerelli S; Bouzin C; Guiot Y; Xhema D; Bollen X; Abdelhamid K; Gianello P
    J Cardiothorac Surg; 2018 Apr; 13(1):34. PubMed ID: 29695259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering.
    Masoumi N; Jean A; Zugates JT; Johnson KL; Engelmayr GC
    J Biomed Mater Res A; 2013 Jan; 101(1):104-14. PubMed ID: 22826211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering.
    Chen Q; Bruyneel A; Carr C; Czernuszka J
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):729-737. PubMed ID: 31184806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition.
    Loger K; Engel A; Haupt J; Lima de Miranda R; Lutter G; Quandt E
    Cardiovasc Eng Technol; 2016 Mar; 7(1):69-77. PubMed ID: 26743538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.