These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31814690)

  • 1. Adversarial Deep Learning in EEG Biometrics.
    Özdenizci O; Wang Y; Koike-Akino T; Erdoğmuş D
    IEEE Signal Process Lett; 2019 May; 26(5):710-714. PubMed ID: 31814690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning Invariant Representations from EEG via Adversarial Inference.
    Özdenizci O; Wang YE; Koike-Akino T; ErdoĞmuŞ D
    IEEE Access; 2020; 8():27074-27085. PubMed ID: 33747669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting Multiple EEG Data Domains with Adversarial Learning.
    Bethge D; Hallgarten P; Ozdenizci O; Mikut R; Schmidt A; Grosse-Puppendahl T
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3154-3158. PubMed ID: 36086033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disentangled Adversarial Transfer Learning for Physiological Biosignals.
    Han M; Ozdenizci O; Wang Y; Koike-Akino T; Erdogmus D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():422-425. PubMed ID: 33018018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-Shot Deep Adversarial Learning for Video-based Person Re-identification.
    Wu L; Wang Y; Yin H; Wang M; Shao L
    IEEE Trans Image Process; 2019 Sep; ():. PubMed ID: 31535998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the robustness of skeleton detection against adversarial attacks.
    Bai X; Yang M; Liu Z
    Neural Netw; 2020 Dec; 132():416-427. PubMed ID: 33022470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust biometric system using session invariant multimodal EEG and keystroke dynamics by the ensemble of self-ONNs.
    Rahman A; Chowdhury MEH; Khandakar A; Tahir AM; Ibtehaz N; Hossain MS; Kiranyaz S; Malik J; Monawwar H; Kadir MA
    Comput Biol Med; 2022 Mar; 142():105238. PubMed ID: 35077938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-based texture roughness classification in active tactile exploration with invariant representation learning networks.
    Özdenizci O; Eldeeb S; Demir A; Erdoğmuş D; Akçakaya M
    Biomed Signal Process Control; 2021 May; 67():. PubMed ID: 33927780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Representation Learning with Part Loss for Person Re-Identification.
    Yao H; Zhang S; Hong R; Zhang Y; Xu C; Tian Q
    IEEE Trans Image Process; 2019 Jan; ():. PubMed ID: 30629501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptual Adversarial Networks for Image-to-Image Transformation.
    Wang C; Xu C; Wanga C; Tao D
    IEEE Trans Image Process; 2018 Aug; 27(8):4066-4079. PubMed ID: 29993743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks.
    Fujioka T; Mori M; Kubota K; Kikuchi Y; Katsuta L; Adachi M; Oda G; Nakagawa T; Kitazume Y; Tateishi U
    Diagnostics (Basel); 2019 Nov; 9(4):. PubMed ID: 31698748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings.
    Tjepkema-Cloostermans MC; de Carvalho RCV; van Putten MJAM
    Clin Neurophysiol; 2018 Oct; 129(10):2191-2196. PubMed ID: 30025804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural inference embedded adversarial networks for scene parsing.
    Wang Z; Wu Y; Bu S; Han P; Zhang G
    PLoS One; 2018; 13(4):e0195114. PubMed ID: 29649294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D PersonVLAD: Learning Deep Global Representations for Video-Based Person Reidentification.
    Wu L; Wang Y; Shao L; Wang M
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3347-3359. PubMed ID: 30716051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based electroencephalography analysis: a systematic review.
    Roy Y; Banville H; Albuquerque I; Gramfort A; Falk TH; Faubert J
    J Neural Eng; 2019 Aug; 16(5):051001. PubMed ID: 31151119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.