These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31814989)

  • 1. A detached petal disc assay and virus-induced gene silencing facilitate the study of
    Cao X; Yan H; Liu X; Li D; Sui M; Wu J; Yu H; Zhang Z
    Hortic Res; 2019; 6():136. PubMed ID: 31814989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection.
    Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z
    BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two transcription factors, RhERF005 and RhCCCH12, regulate rose resistance to Botrytis cinerea by modulating cytokinin levels.
    Liu X; Cao X; Chen M; Li D; Zhang Z
    J Exp Bot; 2024 Apr; 75(8):2584-2597. PubMed ID: 38314882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factors RhbZIP17 and RhWRKY30 enhance resistance to Botrytis cinerea by increasing lignin content in rose petals.
    Li D; Li X; Wang Z; Wang H; Gao J; Liu X; Zhang Z
    J Exp Bot; 2024 Feb; 75(5):1633-1646. PubMed ID: 38180121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of
    Ha STT; Kim YT; Jeon YH; Choi HW; In BC
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34207351
    [No Abstract]   [Full Text] [Related]  

  • 6. Early Detection of
    Ha STT; Kim YT; In BC
    Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140414
    [No Abstract]   [Full Text] [Related]  

  • 7. Rose WRKY13 promotes disease protection to Botrytis by enhancing cytokinin content and reducing abscisic acid signaling.
    Liu X; Zhou X; Li D; Hong B; Gao J; Zhang Z
    Plant Physiol; 2023 Jan; 191(1):679-693. PubMed ID: 36271872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance.
    Li D; Liu X; Shu L; Zhang H; Zhang S; Song Y; Zhang Z
    BMC Plant Biol; 2020 Nov; 20(1):533. PubMed ID: 33228522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.
    Lü P; Zhang C; Liu J; Liu X; Jiang G; Jiang X; Khan MA; Wang L; Hong B; Gao J
    Plant J; 2014 May; 78(4):578-90. PubMed ID: 24589134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance.
    Liu X; Wang Z; Tian Y; Zhang S; Li D; Dong W; Zhang C; Zhang Z
    BMC Plant Biol; 2021 Nov; 21(1):526. PubMed ID: 34758750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to
    Ouyang Z; Liu S; Huang L; Hong Y; Li X; Huang L; Zhang Y; Zhang H; Li D; Song F
    Front Plant Sci; 2016; 7():1964. PubMed ID: 28083004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Lisianthus Cultivars for Resistance to Botrytis cinerea.
    Wegulo SN; Vilchez M
    Plant Dis; 2007 Aug; 91(8):997-1001. PubMed ID: 30780434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea.
    Gao P; Zhang H; Yan H; Wang Q; Yan B; Jian H; Tang K; Qiu X
    BMC Plant Biol; 2021 May; 21(1):223. PubMed ID: 34001006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of
    Muñoz M; Faust JE; Schnabel G
    Plant Dis; 2019 Jul; 103(7):1577-1583. PubMed ID: 31082321
    [No Abstract]   [Full Text] [Related]  

  • 15. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY41 in gray mold resistance.
    Liu X; Li D; Zhang S; Xu Y; Zhang Z
    BMC Plant Biol; 2019 Nov; 19(1):522. PubMed ID: 31775626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent
    Hao Y; Cao X; Ma C; Zhang Z; Zhao N; Ali A; Hou T; Xiang Z; Zhuang J; Wu S; Xing B; Zhang Z; Rui Y
    Front Plant Sci; 2017; 8():1332. PubMed ID: 28824670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of bZIP gene family and function of RcbZIP17 on Botrytis resistance in rose (Rosa chinensis).
    Li D; Li X; Liu X; Zhang Z
    Gene; 2023 Jan; 849():146867. PubMed ID: 36115481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Kinase RhCIPK6 Promotes Petal Senescence in Response to Ethylene in Rose (
    Wu Y; Zuo L; Ma Y; Jiang Y; Gao J; Tao J; Chen C
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers.
    Yan H; Shi S; Ma N; Cao X; Zhang H; Qiu X; Wang Q; Jian H; Zhou N; Zhang Z; Tang K
    J Integr Plant Biol; 2018 Jan; 60(1):34-44. PubMed ID: 28895654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes.
    Ma N; Cai L; Lu W; Tan H; Gao J
    Sci China C Life Sci; 2005 Oct; 48(5):434-44. PubMed ID: 16315594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.