BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31815083)

  • 1. Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis.
    Jung W; Sharma-Shivappa R; Park S; Kolar P
    3 Biotech; 2020 Jan; 10(1):1. PubMed ID: 31815083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin.
    Haven MO; Jørgensen H
    Biotechnol Biofuels; 2013 Nov; 6(1):165. PubMed ID: 24274678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.
    Rodrigues AC; Haven MØ; Lindedam J; Felby C; Gama M
    Enzyme Microb Technol; 2015 Nov; 79-80():70-7. PubMed ID: 26320717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D; Hsieh CW; Felby C; Jørgensen H
    Biotechnol Biofuels; 2012 Apr; 5(1):26. PubMed ID: 22546481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification.
    Zhang DS; Yang Q; Zhu JY; Pan XJ
    Bioresour Technol; 2013 Feb; 129():127-34. PubMed ID: 23232228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends.
    Cianchetta S; Bregoli L; Galletti S
    Appl Biochem Biotechnol; 2017 Nov; 183(3):876-892. PubMed ID: 28386674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Feb; 102(2):457-67. PubMed ID: 18781688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
    Kellock M; Rahikainen J; Marjamaa K; Kruus K
    Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Secretome of
    Machado AS; Valadares F; Silva TF; Milagres AMF; Segato F; Ferraz A
    Front Bioeng Biotechnol; 2020; 8():826. PubMed ID: 32766234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment.
    McIntosh S; Vancov T
    Bioresour Technol; 2010 Sep; 101(17):6718-27. PubMed ID: 20403691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Lignin Content on Cellulolytic Saccharification of Liquid Hot Water Pretreated Sugarcane Bagasse.
    Ladeira Ázar RIS; Bordignon-Junior SE; Laufer C; Specht J; Ferrier D; Kim D
    Molecules; 2020 Jan; 25(3):. PubMed ID: 32023910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of ozone pretreated energy grasses for optimal fermentable sugar production.
    Panneerselvam A; Sharma-Shivappa RR; Kolar P; Clare DA; Ranney T
    Bioresour Technol; 2013 Nov; 148():97-104. PubMed ID: 24045197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of enzymatic hydrolysis by residual lignins from softwood--study of enzyme binding and inactivation on lignin-rich surface.
    Rahikainen J; Mikander S; Marjamaa K; Tamminen T; Lappas A; Viikari L; Kruus K
    Biotechnol Bioeng; 2011 Dec; 108(12):2823-34. PubMed ID: 21702025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification.
    Cianchetta S; Galletti S; Burzi PL; Cerato C
    Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of alkali-soluble lignin on purified core cellulase and hemicellulase activities during hydrolysis of extractive ammonia-pretreated lignocellulosic biomass.
    Zhou L; da Costa Sousa L; Dale BE; Feng JX; Balan V
    R Soc Open Sci; 2018 Jun; 5(6):171529. PubMed ID: 30110471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes.
    Zhang M; Su R; Qi W; He Z
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1407-14. PubMed ID: 19288067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.