These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31815083)

  • 61. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.
    Machado DL; Moreira Neto J; da Cruz Pradella JG; Bonomi A; Rabelo SC; da Costa AC
    Biotechnol Appl Biochem; 2015; 62(5):681-9. PubMed ID: 25322902
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates.
    Xiao Z; Zhang X; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2004; 113-116():1115-26. PubMed ID: 15054257
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Potential of agricultural residues and hay for bioethanol production.
    Chen Y; Sharma-Shivappa RR; Keshwani D; Chen C
    Appl Biochem Biotechnol; 2007 Sep; 142(3):276-90. PubMed ID: 18025588
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sodium hydroxide pretreatment of genetically modified switchgrass for improved enzymatic release of sugars.
    Wang Z; Li R; Xu J; Marita JM; Hatfield RD; Qu R; Cheng JJ
    Bioresour Technol; 2012 Apr; 110():364-70. PubMed ID: 22330602
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(2):302-14. PubMed ID: 19301243
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose.
    Liu H; Zhu JY; Fu SY
    J Agric Food Chem; 2010 Jun; 58(12):7233-8. PubMed ID: 20509690
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover.
    Pribowo A; Arantes V; Saddler JN
    Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.
    Várnai A; Viikari L; Marjamaa K; Siika-aho M
    Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum.
    Lynd LR; Grethlein HE
    Biotechnol Bioeng; 1987 Jan; 29(1):92-100. PubMed ID: 18561134
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources.
    Wyman CE; Balan V; Dale BE; Elander RT; Falls M; Hames B; Holtzapple MT; Ladisch MR; Lee YY; Mosier N; Pallapolu VR; Shi J; Thomas SR; Warner RE
    Bioresour Technol; 2011 Dec; 102(24):11052-62. PubMed ID: 21816612
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficient pretreatment of Vietnamese rice straw by soda and sulfate cooking methods for enzymatic saccharification.
    Dien le Q; Phuong NT; Hoa DT; Hoang PH
    Appl Biochem Biotechnol; 2015 Feb; 175(3):1536-47. PubMed ID: 25410798
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pretreatment of corn stover for sugar production with switchgrass-derived black liquor.
    Xu J; Zhang X; Cheng JJ
    Bioresour Technol; 2012 May; 111():255-60. PubMed ID: 22357289
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Temperature dependent cellulase adsorption on lignin from sugarcane bagasse.
    Zanchetta A; Dos Santos ACF; Ximenes E; da Costa Carreira Nunes C; Boscolo M; Gomes E; Ladisch MR
    Bioresour Technol; 2018 Mar; 252():143-149. PubMed ID: 29316500
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and hydrogen peroxide.
    Yu HL; Tang Y; Xing Y; Zhu LW; Jiang JX
    Bioresour Technol; 2013 Nov; 147():29-36. PubMed ID: 23985372
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover.
    Liu H; Pang B; Wang H; Li H; Lu J; Niu M
    J Agric Food Chem; 2015 Apr; 63(12):3229-34. PubMed ID: 25773993
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The laccase-catalyzed modification of lignin for enzymatic hydrolysis.
    Moilanen U; Kellock M; Galkin S; Viikari L
    Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass.
    Nlewem KC; Thrash ME
    Bioresour Technol; 2010 Jul; 101(14):5426-30. PubMed ID: 20219364
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Feb; 109(2):353-62. PubMed ID: 21898366
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification.
    Li Q; Gao Y; Wang H; Li B; Liu C; Yu G; Mu X
    Bioresour Technol; 2012 Dec; 125():193-9. PubMed ID: 23026334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.