These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31815133)

  • 1. Characteristic of Motor Control in Three-Dimensional Circular Tracking Movements during Monocular Vision.
    Choi W; Li L; Lee J
    Biomed Res Int; 2019; 2019():3867138. PubMed ID: 31815133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information.
    Lee G; Choi W; Jo H; Park W; Kim J
    PLoS One; 2020; 15(11):e0241138. PubMed ID: 33175910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a quantitative evaluation system for visuo-motor control in three-dimensional virtual reality space.
    Choi W; Lee J; Yanagihara N; Li L; Kim J
    Sci Rep; 2018 Sep; 8(1):13439. PubMed ID: 30194427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of different depth planes during a manual tracking task in three-dimensional virtual reality space.
    Kim H; Koike Y; Choi W; Lee J
    Sci Rep; 2023 Dec; 13(1):21499. PubMed ID: 38057361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.
    Singh T; Perry CM; Herter TM
    J Neuroeng Rehabil; 2016 Jan; 13():10. PubMed ID: 26812907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor control of intermittent circular tracking movements with visually guided orbits in 3D VR environment.
    Choi W; Yanagihara N; Li L; Kim J; Lee J
    PLoS One; 2021; 16(5):e0251371. PubMed ID: 34043647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some binocular advantages for planning reach, but not grasp, components of prehension.
    Grant S; Conway ML
    Exp Brain Res; 2019 May; 237(5):1239-1255. PubMed ID: 30850853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Visuo Motor Control between Dominant Hand and Non-Dominant Hand for Effective Human-Robot Collaboration.
    Jo H; Choi W; Lee G; Park W; Kim J
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distance estimation in the visual and visuomotor systems.
    Servos P
    Exp Brain Res; 2000 Jan; 130(1):35-47. PubMed ID: 10638439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate planning of manual tracking requires a 3D visuomotor transformation of velocity signals.
    Leclercq G; Blohm G; Lefèvre P
    J Vis; 2012 May; 12(5):6. PubMed ID: 22637707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Control Characteristics between Dominant and Non-Dominant Hands by Transient Responses of Circular Tracking Movements in 3D Virtual Reality Space.
    Park W; Choi W; Jo H; Lee G; Kim J
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye movements in chameleons are not truly independent - evidence from simultaneous monocular tracking of two targets.
    Katz HK; Lustig A; Lev-Ari T; Nov Y; Rivlin E; Katzir G
    J Exp Biol; 2015 Jul; 218(Pt 13):2097-105. PubMed ID: 26157161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of strabismic amblyopia on visuomotor behavior: part II. Visually guided reaching.
    Niechwiej-Szwedo E; Goltz HC; Chandrakumar M; Wong AM
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3857-65. PubMed ID: 24867577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment.
    Lefrançois C; Messier J
    Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior: III. Temporal eye-hand coordination during reaching.
    Niechwiej-Szwedo E; Goltz HC; Chandrakumar M; Wong AM
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):7831-8. PubMed ID: 25389201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional manual tracking of periodic movements: event and time interval analyses.
    Mates J; Radil T
    Int J Psychophysiol; 1992 Mar; 12(2):123-32. PubMed ID: 1592665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive strategies in interception tasks: differences between eye and hand movements.
    Eggert T; Rivas F; Straube A
    Exp Brain Res; 2005 Jan; 160(4):433-49. PubMed ID: 15551090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.