BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31815141)

  • 1. Identifying Mutually Exclusive Gene Sets with Prognostic Value and Novel Potential Driver Genes in Patients with Glioblastoma.
    Gao Q; Cui Y; Shen Y; Li Y; Gao X; Xi Y; Wang T
    Biomed Res Int; 2019; 2019():4860367. PubMed ID: 31815141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations.
    Hua X; Hyland PL; Huang J; Song L; Zhu B; Caporaso NE; Landi MT; Chatterjee N; Shi J
    Am J Hum Genet; 2016 Mar; 98(3):442-455. PubMed ID: 26899600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A five-miRNA signature with prognostic and predictive value for MGMT promoter-methylated glioblastoma patients.
    Cheng W; Ren X; Cai J; Zhang C; Li M; Wang K; Liu Y; Han S; Wu A
    Oncotarget; 2015 Oct; 6(30):29285-95. PubMed ID: 26320189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a multidimensional transcriptome signature for survival prediction of postoperative glioblastoma multiforme patients.
    Gao WZ; Guo LM; Xu TQ; Yin YH; Jia F
    J Transl Med; 2018 Dec; 16(1):368. PubMed ID: 30572911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 63 signature genes prediction system is effective for glioblastoma prognosis.
    Zhang Y; Xu J; Zhu X
    Int J Mol Med; 2018 Apr; 41(4):2070-2078. PubMed ID: 29393370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive analysis of prognosis prediction models based on pathway‑level, gene‑level and clinical information for glioblastoma.
    Liang R; Wang M; Zheng G; Zhu H; Zhi Y; Sun Z
    Int J Mol Med; 2018 Oct; 42(4):1837-1846. PubMed ID: 30015853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method.
    Kunkle B; Yoo C; Roy D
    Neurotoxicology; 2013 Mar; 35():1-14. PubMed ID: 23261424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual exclusivity analysis identifies oncogenic network modules.
    Ciriello G; Cerami E; Sander C; Schultz N
    Genome Res; 2012 Feb; 22(2):398-406. PubMed ID: 21908773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A forward selection algorithm to identify mutually exclusive alterations in cancer studies.
    Zhang Z; Yang Y; Zhou Y; Fang H; Yuan M; Sasser K; Hamadeh H; Xu XS
    J Hum Genet; 2021 May; 66(5):509-518. PubMed ID: 33177701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IndividualizedPath: identifying genetic alterations contributing to the dysfunctional pathways in glioblastoma individuals.
    Ping Y; Zhang H; Deng Y; Wang L; Zhao H; Pang L; Fan H; Xu C; Li F; Zhang Y; Gong Y; Xiao Y; Li X
    Mol Biosyst; 2014 Aug; 10(8):2031-42. PubMed ID: 24911613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients.
    Yong WH; Shabihkhani M; Telesca D; Yang S; Tso JL; Menjivar JC; Wei B; Lucey GM; Mareninov S; Chen Z; Liau LM; Lai A; Nelson SF; Cloughesy TF; Tso CL
    PLoS One; 2015; 10(10):e0141334. PubMed ID: 26506620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated network analysis identifies core pathways in glioblastoma.
    Cerami E; Demir E; Schultz N; Taylor BS; Sander C
    PLoS One; 2010 Feb; 5(2):e8918. PubMed ID: 20169195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.
    Gu Y; Wang H; Qin Y; Zhang Y; Zhao W; Qi L; Zhang Y; Wang C; Guo Z
    Mol Biosyst; 2013 Mar; 9(3):467-77. PubMed ID: 23344900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of TFDP1 and of the cell cycle pathway in high-grade glioblastoma multiforme: a bioinformatic analysis.
    Lu X; Lv XD; Ren YH; Yang WD; Li ZB; Zhang L; Bai XF
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27323154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.