These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31815426)
21. Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device. Tian H; Cao X; Xie Y; Yan X; Kostelec A; DiMarzio D; Chang C; Zhao LD; Wu W; Tice J; Cha JJ; Guo J; Wang H ACS Nano; 2017 Jul; 11(7):7156-7163. PubMed ID: 28656774 [TBL] [Abstract][Full Text] [Related]
22. Artificial synapses based on HfO Özkal B; Al-Jawfi NAAS; Ekinci G; Rameev BZ; Khaibullin RI; Kazan S Nanotechnology; 2024 Oct; 36(2):. PubMed ID: 39389085 [TBL] [Abstract][Full Text] [Related]
23. Energy-Efficient Artificial Synapses Based on Oxide Tunnel Junctions. Li J; Ge C; Lu H; Guo H; Guo EJ; He M; Wang C; Yang G; Jin K ACS Appl Mater Interfaces; 2019 Nov; 11(46):43473-43479. PubMed ID: 31702891 [TBL] [Abstract][Full Text] [Related]
24. A neuromorphic VLSI design for spike timing and rate based synaptic plasticity. Rahimi Azghadi M; Al-Sarawi S; Abbott D; Iannella N Neural Netw; 2013 Sep; 45():70-82. PubMed ID: 23566339 [TBL] [Abstract][Full Text] [Related]
25. Phase-change nanoclusters embedded in a memristor for simulating synaptic learning. Wan Q; Zeng F; Yin J; Sun Y; Hu Y; Liu J; Wang Y; Li G; Guo D; Pan F Nanoscale; 2019 Mar; 11(12):5684-5692. PubMed ID: 30855052 [TBL] [Abstract][Full Text] [Related]
26. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing. Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171 [TBL] [Abstract][Full Text] [Related]
27. A 0.086-mm Frenkel C; Lefebvre M; Legat JD; Bol D IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919 [TBL] [Abstract][Full Text] [Related]
28. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Wang H; Lu W; Hou S; Yu B; Zhou Z; Xue Y; Guo R; Wang S; Zeng K; Yan X Nanoscale; 2020 Nov; 12(42):21913-21922. PubMed ID: 33112322 [TBL] [Abstract][Full Text] [Related]
29. Unveiling the Role of Side Chain for Improving Nonvolatile Characteristics of Conjugated Polymers-Based Artificial Synapse. Sung J; Chung S; Jang Y; Jang H; Kim J; Lee C; Lee D; Jeong D; Cho K; Kim YS; Kang J; Lee W; Lee E Adv Sci (Weinh); 2024 Apr; 11(16):e2400304. PubMed ID: 38408158 [TBL] [Abstract][Full Text] [Related]
30. Alloy electrode engineering in memristors for emulating the biological synapse. Wang J; Cao G; Sun K; Lan J; Pei Y; Chen J; Yan X Nanoscale; 2022 Jan; 14(4):1318-1326. PubMed ID: 35013742 [TBL] [Abstract][Full Text] [Related]
31. Mimicking Neurotransmitter Activity and Realizing Algebraic Arithmetic on Flexible Protein-Gated Oxide Neuromorphic Transistors. Li ZY; Zhu LQ; Guo LQ; Ren ZY; Xiao H; Cai JC ACS Appl Mater Interfaces; 2021 Feb; 13(6):7784-7791. PubMed ID: 33533611 [TBL] [Abstract][Full Text] [Related]
32. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs. Du N; Kiani M; Mayr CG; You T; Bürger D; Skorupa I; Schmidt OG; Schmidt H Front Neurosci; 2015; 9():227. PubMed ID: 26175666 [TBL] [Abstract][Full Text] [Related]
33. A synaptic memristor based on two-dimensional layered WSe Luo S; Liao K; Lei P; Jiang T; Chen S; Xie Q; Luo W; Huang W; Yuan S; Jie W; Hao J Nanoscale; 2021 Apr; 13(13):6654-6660. PubMed ID: 33885544 [TBL] [Abstract][Full Text] [Related]
34. Ambient Stable All Inorganic CsCu Kwak KJ; Baek JH; Lee DE; Im IH; Kim J; Kim SJ; Lee YJ; Kim JY; Jang HW Nano Lett; 2022 Jul; 22(14):6010-6017. PubMed ID: 35675157 [TBL] [Abstract][Full Text] [Related]
35. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Prezioso M; Mahmoodi MR; Bayat FM; Nili H; Kim H; Vincent A; Strukov DB Nat Commun; 2018 Dec; 9(1):5311. PubMed ID: 30552327 [TBL] [Abstract][Full Text] [Related]
36. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. Dang B; Wu Q; Song F; Sun J; Yang M; Ma X; Wang H; Hao Y Nanoscale; 2018 Nov; 10(43):20089-20095. PubMed ID: 30357252 [TBL] [Abstract][Full Text] [Related]
37. Self-Doping Memristors with Equivalently Synaptic Ion Dynamics for Neuromorphic Computing. Wang Y; Zhang Z; Xu M; Yang Y; Ma M; Li H; Pei J; Shi L ACS Appl Mater Interfaces; 2019 Jul; 11(27):24230-24240. PubMed ID: 31119929 [TBL] [Abstract][Full Text] [Related]
38. Artificial Synapses Based on an Optical/Electrical Biomemristor. Wang L; Wei S; Xie J; Ju Y; Yang T; Wen D Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063708 [TBL] [Abstract][Full Text] [Related]
39. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Wu C; Kim TW; Choi HY; Strukov DB; Yang JJ Nat Commun; 2017 Sep; 8(1):752. PubMed ID: 28963546 [TBL] [Abstract][Full Text] [Related]
40. Programmable Synaptic Metaplasticity and below Femtojoule Spiking Energy Realized in Graphene-Based Neuromorphic Memristor. Liu B; Liu Z; Chiu IS; Di M; Wu Y; Wang JC; Hou TH; Lai CS ACS Appl Mater Interfaces; 2018 Jun; 10(24):20237-20243. PubMed ID: 29873237 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]