These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31815479)

  • 1. Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker.
    Su Z; Juhaniewicz-Debinska J; Sek S; Lipkowski J
    Langmuir; 2020 Jan; 36(1):409-418. PubMed ID: 31815479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide.
    Su Z; Shodiev M; Leitch JJ; Abbasi F; Lipkowski J
    Langmuir; 2018 May; 34(21):6249-6260. PubMed ID: 29722994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Interfacial Water on the Nanomechanical Properties of Negatively Charged Floating Bilayers Supported on Gold Electrodes.
    Juhaniewicz-Dębińska J; Konarzewska D; Sęk S
    Langmuir; 2019 Jul; 35(29):9422-9429. PubMed ID: 31241963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEIRAS Studies of Water Structure in a Sodium Dodecyl Sulfate Film Adsorbed at a Gold Electrode Surface.
    Grossutti M; Leitch JJ; Seenath R; Karaskiewicz M; Lipkowski J
    Langmuir; 2015 Apr; 31(15):4411-8. PubMed ID: 25812153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore Forming Properties of Alamethicin in Negatively Charged Floating Bilayer Lipid Membranes Supported on Gold Electrodes.
    Abbasi F; Alvarez-Malmagro J; Su Z; Leitch JJ; Lipkowski J
    Langmuir; 2018 Nov; 34(45):13754-13765. PubMed ID: 30265810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) to Probe Interfacial Water in Floating Bilayer Lipid Membranes (fBLMs).
    Burdach K; Dziubak D; Sek S
    Methods Mol Biol; 2022; 2402():199-207. PubMed ID: 34854046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer.
    Kycia AH; Wang J; Merrill AR; Lipkowski J
    Langmuir; 2011 Sep; 27(17):10867-77. PubMed ID: 21766864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface.
    Laredo T; Dutcher JR; Lipkowski J
    Langmuir; 2011 Aug; 27(16):10072-87. PubMed ID: 21707110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract.
    Taylor GJ; Sarles SA
    Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparsely tethered bilayer lipid membranes formed by self-assembly of bicelles: Spectroelectrochemical characterization and incorporation of transmembrane protein.
    Dziubak D; Sęk S
    Bioelectrochemistry; 2023 Oct; 153():108482. PubMed ID: 37271008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of strong and weak lipid-protein interactions on the structure of a lipid bilayer on a gold electrode surface.
    Nullmeier M; Koliwer-Brandl H; Kelm S; Zägel P; Koch KW; Brand I
    Chemphyschem; 2011 Apr; 12(6):1066-79. PubMed ID: 21442718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single ion-channel recordings using glass nanopore membranes.
    White RJ; Ervin EN; Yang T; Chen X; Daniel S; Cremer PS; White HS
    J Am Chem Soc; 2007 Sep; 129(38):11766-75. PubMed ID: 17784758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.
    Ataka K; Stripp ST; Heberle J
    Biochim Biophys Acta; 2013 Oct; 1828(10):2283-93. PubMed ID: 23816441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 1999 Jun; 76(6):3186-91. PubMed ID: 10354443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode.
    Smith SR; Seenath R; Kulak MR; Lipkowski J
    Langmuir; 2015 Sep; 31(36):10076-86. PubMed ID: 26313341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water channel formation and ion transport in linear and branched lipid bilayers.
    Wang S; Larson RG
    Phys Chem Chem Phys; 2014 Apr; 16(16):7251-62. PubMed ID: 24618598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical and PM-IRRAS studies of the effect of the static electric field on the structure of the DMPC bilayer supported at a Au(111) electrode surface.
    Bin X; Zawisza I; Goddard JD; Lipkowski J
    Langmuir; 2005 Jan; 21(1):330-47. PubMed ID: 15620322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
    Sansom MS; Tieleman DP; Berendsen HJ
    Novartis Found Symp; 1999; 225():128-41; discussion 141-5. PubMed ID: 10472052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View.
    Abbasi F; Su Z; Alvarez-Malmagro J; Leitch JJ; Lipkowski J
    Langmuir; 2019 Apr; 35(14):5060-5068. PubMed ID: 30888178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.