BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31815657)

  • 1. The majority of A-to-I RNA editing is not required for mammalian homeostasis.
    Chalk AM; Taylor S; Heraud-Farlow JE; Walkley CR
    Genome Biol; 2019 Dec; 20(1):268. PubMed ID: 31815657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis.
    Heraud-Farlow JE; Chalk AM; Linder SE; Li Q; Taylor S; White JM; Pang L; Liddicoat BJ; Gupte A; Li JB; Walkley CR
    Genome Biol; 2017 Sep; 18(1):166. PubMed ID: 28874170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing.
    Costa Cruz PH; Kato Y; Nakahama T; Shibuya T; Kawahara Y
    RNA; 2020 Apr; 26(4):454-469. PubMed ID: 31941663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway.
    Walkley CR; Kile BT
    Cell Death Dis; 2019 Dec; 10(12):913. PubMed ID: 31801951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself.
    Liddicoat BJ; Piskol R; Chalk AM; Ramaswami G; Higuchi M; Hartner JC; Li JB; Seeburg PH; Walkley CR
    Science; 2015 Sep; 349(6252):1115-20. PubMed ID: 26275108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain.
    Kim JI; Nakahama T; Yamasaki R; Costa Cruz PH; Vongpipatana T; Inoue M; Kanou N; Xing Y; Todo H; Shibuya T; Kato Y; Kawahara Y
    PLoS Genet; 2021 May; 17(5):e1009516. PubMed ID: 33983932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs.
    Heraud-Farlow JE; Walkley CR
    Open Biol; 2020 Jul; 10(7):200085. PubMed ID: 32603639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADAR1, inosine and the immune sensing system: distinguishing self from non-self.
    Liddicoat BJ; Chalk AM; Walkley CR
    Wiley Interdiscip Rev RNA; 2016; 7(2):157-72. PubMed ID: 26692549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate recognition by ADAR1 and ADAR2.
    Wong SK; Sato S; Lazinski DW
    RNA; 2001 Jun; 7(6):846-58. PubMed ID: 11421361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the functions of adenosine-to-inosine RNA editing through hematology.
    Heraud-Farlow JE; Chalk AM; Walkley CR
    Curr Opin Hematol; 2019 Jul; 26(4):241-248. PubMed ID: 31033705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous.
    Keegan LP; Hajji K; O'Connell MA
    Acc Chem Res; 2023 Nov; 56(22):3165-3174. PubMed ID: 37906879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing of Cellular Self-RNAs by Adenosine Deaminase ADAR1 Suppresses Innate Immune Stress Responses.
    George CX; Ramaswami G; Li JB; Samuel CE
    J Biol Chem; 2016 Mar; 291(12):6158-68. PubMed ID: 26817845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA-editing enzyme ADAR1: a regulatory hub that tunes multiple dsRNA-sensing pathways.
    Nakahama T; Kawahara Y
    Int Immunol; 2023 Mar; 35(3):123-133. PubMed ID: 36469491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA editing of AZIN1 coding sites is catalyzed by ADAR1 p150 after splicing.
    Xing Y; Nakahama T; Wu Y; Inoue M; Kim JI; Todo H; Shibuya T; Kato Y; Kawahara Y
    J Biol Chem; 2023 Jul; 299(7):104840. PubMed ID: 37209819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADAR2 affects mRNA coding sequence edits with only modest effects on gene expression or splicing in vivo.
    Dillman AA; Cookson MR; Galter D
    RNA Biol; 2016; 13(1):15-24. PubMed ID: 26669816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates.
    Shanmugam R; Zhang F; Srinivasan H; Charles Richard JL; Liu KI; Zhang X; Woo CWA; Chua ZHM; Buschdorf JP; Meaney MJ; Tan MH
    Nucleic Acids Res; 2018 Aug; 46(14):7379-7395. PubMed ID: 29992293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-editing enzymes ADAR1 and ADAR2 coordinately regulate the editing and expression of Ctn RNA.
    Anantharaman A; Gholamalamdari O; Khan A; Yoon JH; Jantsch MF; Hartner JC; Gorospe M; Prasanth SG; Prasanth KV
    FEBS Lett; 2017 Sep; 591(18):2890-2904. PubMed ID: 28833069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma.
    Oakes E; Anderson A; Cohen-Gadol A; Hundley HA
    J Biol Chem; 2017 Mar; 292(10):4326-4335. PubMed ID: 28167531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations.
    Hajji K; Sedmík J; Cherian A; Amoruso D; Keegan LP; O'Connell MA
    RNA; 2022 Oct; 28(10):1281-1297. PubMed ID: 35863867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells.
    Gan Z; Zhao L; Yang L; Huang P; Zhao F; Li W; Liu Y
    J Biol Chem; 2006 Nov; 281(44):33386-94. PubMed ID: 16956888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.