BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31815670)

  • 1. Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation.
    Amamoto R; Garcia MD; West ER; Choi J; Lapan SW; Lane EA; Perrimon N; Cepko CL
    Elife; 2019 Dec; 8():. PubMed ID: 31815670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probe-Seq: Method for RNA Sequencing of Specific Cell Types from Animal Tissue.
    Amamoto R; Garcia MD; West ER; Choi J; Lapan SW; Lane EA; Perrimon N; Cepko CL
    Bio Protoc; 2020 Sep; 10(18):e3749. PubMed ID: 33659409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NKX2-2 based nuclei sorting on frozen human archival pancreas enables the enrichment of islet endocrine populations for single-nucleus RNA sequencing.
    Xie G; Toledo MP; Hu X; Yong HJ; Sanchez PS; Liu C; Naji A; Irianto J; Wang YJ
    BMC Genomics; 2024 Apr; 25(1):427. PubMed ID: 38689254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-Activated Cell Sorting and Gene Expression Profiling of GFP-Positive Cells from Transgenic Zebrafish Lines.
    Tanabe H; Seki M; Itoh M; Deepak A; Lal P; Horiuchi T; Suzuki Y; Kawakami K
    Methods Mol Biol; 2016; 1451():93-106. PubMed ID: 27464803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FIN-Seq: transcriptional profiling of specific cell types from frozen archived tissue of the human central nervous system.
    Amamoto R; Zuccaro E; Curry NC; Khurana S; Chen HH; Cepko CL; Arlotta P
    Nucleic Acids Res; 2020 Jan; 48(1):e4. PubMed ID: 31728515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional Cell Specific RNA Expression Profiling of FACS Isolated Drosophila Intestinal Cell Populations.
    Dutta D; Buchon N; Xiang J; Edgar BA
    Curr Protoc Stem Cell Biol; 2015 Aug; 34():2F.2.1-2F.2.14. PubMed ID: 26237570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing.
    Keren-Shaul H; Kenigsberg E; Jaitin DA; David E; Paul F; Tanay A; Amit I
    Nat Protoc; 2019 Jun; 14(6):1841-1862. PubMed ID: 31101904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell fixation and preservation for droplet-based single-cell transcriptomics.
    Alles J; Karaiskos N; Praktiknjo SD; Grosswendt S; Wahle P; Ruffault PL; Ayoub S; Schreyer L; Boltengagen A; Birchmeier C; Zinzen R; Kocks C; Rajewsky N
    BMC Biol; 2017 May; 15(1):44. PubMed ID: 28526029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Nuclei Isolation for Single-Nucleus RNA Sequencing.
    Xin X; Du F; Jiao Y
    Methods Mol Biol; 2023; 2686():307-311. PubMed ID: 37540366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of Adult Spinal Cord Nuclei for Massively Parallel Single-nucleus RNA Sequencing.
    Matson KJE; Sathyamurthy A; Johnson KR; Kelly MC; Kelley MW; Levine AJ
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimized FACS-free single-nucleus RNA sequencing (snRNA-seq) method for plant science research.
    Wang K; Zhao C; Xiang S; Duan K; Chen X; Guo X; Sahu SK
    Plant Sci; 2023 Jan; 326():111535. PubMed ID: 36400127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq following PCR-based sorting reveals rare cell transcriptional signatures.
    Pellegrino M; Sciambi A; Yates JL; Mast JD; Silver C; Eastburn DJ
    BMC Genomics; 2016 May; 17():361. PubMed ID: 27189161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collection of cells for single-cell RNA sequencing using high-resolution fluorescence microscopy.
    Segeren HA; Andree KC; Oomens L; Westendorp B
    STAR Protoc; 2021 Sep; 2(3):100718. PubMed ID: 34401784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.