These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31815831)
1. Greater Lower Limb Fatigability in People with Prediabetes than Controls. Senefeld JW; Harmer AR; Hunter SK Med Sci Sports Exerc; 2020 May; 52(5):1176-1186. PubMed ID: 31815831 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms for the increased fatigability of the lower limb in people with type 2 diabetes. Senefeld J; Magill SB; Harkins A; Harmer AR; Hunter SK J Appl Physiol (1985); 2018 Aug; 125(2):553-566. PubMed ID: 29596017 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults. Sundberg CW; Kuplic A; Hassanlouei H; Hunter SK J Appl Physiol (1985); 2018 Jul; 125(1):146-158. PubMed ID: 29494293 [TBL] [Abstract][Full Text] [Related]
4. Exercise-induced hyperemia is associated with knee extensor fatigability in adults with type 2 diabetes. Senefeld JW; Limberg JK; Lukaszewicz KM; Hunter SK J Appl Physiol (1985); 2019 Mar; 126(3):658-667. PubMed ID: 30605399 [TBL] [Abstract][Full Text] [Related]
5. Greater fatigue resistance of dorsiflexor muscles in people with prediabetes than type 2 diabetes. Senefeld JW; Singh-Peters LA; Kenno KA; Hunter SK; Jakobi JM J Electromyogr Kinesiol; 2020 Oct; 54():102458. PubMed ID: 32896804 [TBL] [Abstract][Full Text] [Related]
6. Greater fatigability and motor unit discharge variability in human type 2 diabetes. Senefeld JW; Keenan KG; Ryan KS; D'Astice SE; Negro F; Hunter SK Physiol Rep; 2020 Jul; 8(13):e14503. PubMed ID: 32633071 [TBL] [Abstract][Full Text] [Related]
7. Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Senefeld J; Yoon T; Hunter SK Exp Gerontol; 2017 Jan; 87(Pt A):74-83. PubMed ID: 27989926 [TBL] [Abstract][Full Text] [Related]
8. Performance fatigability during isometric vs. concentric quadriceps fatiguing tasks in men and women. Varesco G; Lapole T; Royer N; Singh B; Parent A; Féasson L; Millet GY; Rozand V J Electromyogr Kinesiol; 2022 Dec; 67():102715. PubMed ID: 36274441 [TBL] [Abstract][Full Text] [Related]
9. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Goodall S; Charlton K; Howatson G; Thomas K Med Sci Sports Exerc; 2015 Mar; 47(3):528-36. PubMed ID: 25010404 [TBL] [Abstract][Full Text] [Related]
10. Fatigability of the knee extensor muscles during high-load fast and low-load slow resistance exercise in young and older adults. Delgadillo JD; Sundberg CW; Kwon M; Hunter SK Exp Gerontol; 2021 Oct; 154():111546. PubMed ID: 34492255 [TBL] [Abstract][Full Text] [Related]
11. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. Ansdell P; Brownstein CG; Škarabot J; Hicks KM; Simoes DCM; Thomas K; Howatson G; Hunter SK; Goodall S J Appl Physiol (1985); 2019 Jun; 126(6):1701-1712. PubMed ID: 30844334 [TBL] [Abstract][Full Text] [Related]
12. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions. Brotherton EJ; Sabapathy S; Mckeown DJ; Kavanagh JJ J Neurophysiol; 2022 Jul; 128(1):105-117. PubMed ID: 35675447 [TBL] [Abstract][Full Text] [Related]
13. Sex differences in neuromuscular function after repeated eccentric contractions of the knee extensor muscles. Lee A; Baxter J; Eischer C; Gage M; Hunter S; Yoon T Eur J Appl Physiol; 2017 Jun; 117(6):1119-1130. PubMed ID: 28432420 [TBL] [Abstract][Full Text] [Related]
14. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles. Aboodarda SJ; Iannetta D; Emami N; Varesco G; Murias JM; Millet GY J Physiol; 2020 Jan; 598(2):285-302. PubMed ID: 31826296 [TBL] [Abstract][Full Text] [Related]
15. Age differences in knee extension power, contractile velocity, and fatigability. Petrella JK; Kim JS; Tuggle SC; Hall SR; Bamman MM J Appl Physiol (1985); 2005 Jan; 98(1):211-20. PubMed ID: 15347625 [TBL] [Abstract][Full Text] [Related]
16. Neural and muscular contributions to the age-related differences in peak power of the knee extensors in men and women. Wrucke DJ; Kuplic A; Adam MD; Hunter SK; Sundberg CW J Appl Physiol (1985); 2024 Oct; 137(4):1021-1040. PubMed ID: 39205638 [TBL] [Abstract][Full Text] [Related]
17. Sex differences in fatigability and recovery relative to the intensity-duration relationship. Ansdell P; Brownstein CG; Škarabot J; Hicks KM; Howatson G; Thomas K; Hunter SK; Goodall S J Physiol; 2019 Dec; 597(23):5577-5595. PubMed ID: 31529693 [TBL] [Abstract][Full Text] [Related]
18. Sex differences with aging in the fatigability of dynamic contractions. Yoon T; Doyel R; Widule C; Hunter SK Exp Gerontol; 2015 Oct; 70():1-10. PubMed ID: 26159162 [TBL] [Abstract][Full Text] [Related]
19. Effect of race distance on performance fatigability in male trail and ultra-trail runners. Temesi J; Besson T; Parent A; Singh B; Martin V; Brownstein CG; Espeit L; Royer N; Rimaud D; Lapole T; Féasson L; Millet GY Scand J Med Sci Sports; 2021 Sep; 31(9):1809-1821. PubMed ID: 34170574 [TBL] [Abstract][Full Text] [Related]
20. The Effect of Duration on Performance and Perceived Fatigability During Acute High-Intensity Interval Exercise in Young, Healthy Males and Females. Tripp TR; Caswell AM; Aboodarda SJ; MacInnis MJ Scand J Med Sci Sports; 2024 Jul; 34(7):e14692. PubMed ID: 38982705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]