These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3181600)

  • 1. 1,2-Cyclohexanedione modification of arginine residues in egg-white riboflavin-binding protein.
    Kozik A; Guevara I; Zak Z
    Int J Biochem; 1988; 20(7):707-11. PubMed ID: 3181600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of arginine residues in human growth hormone by 1,2-cyclohexanedione: effects on the binding capacity to lactogenic and somatogenic receptors.
    Atlasovich FM; Caridad JJ; Nowicki C; Santomé JA; Wolfenstein-Todel C
    Arch Biochem Biophys; 1990 Aug; 281(1):1-5. PubMed ID: 2166475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of arginines in bovine growth hormone.
    Wolfenstein-Todel C; Santomé JA
    Int J Pept Protein Res; 1983 Nov; 22(5):611-6. PubMed ID: 6317584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible modification of arginine residues in neocarzinostatin. Isolation of a biologically active 89-residue fragment from the tryptic hydrolysate.
    Samy TS; Kappen LS; Goldberg IH
    J Biol Chem; 1980 Apr; 255(8):3420-6. PubMed ID: 6444949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione.
    Vlahos CJ; Ghalambor MA; Dekker EE
    J Biol Chem; 1985 May; 260(9):5480-5. PubMed ID: 3886656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of functional arginine residues in ribonuclease A and lysozyme.
    Patthy L; Smith EL
    J Biol Chem; 1975 Jan; 250(2):565-9. PubMed ID: 1112778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
    Davril M; Jung ML; Duportail G; Lohez M; Han KK; Bieth JG
    J Biol Chem; 1984 Mar; 259(6):3851-7. PubMed ID: 6561199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Clostridium difficile toxin A and B by 1,2-cyclohexanedione modification of an arginine residue.
    Balfanz J; Rautenberg P
    Biochem Biophys Res Commun; 1989 Dec; 165(3):1364-70. PubMed ID: 2610698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the C-1-phosphate-binding arginine residue of rabbit-muscle aldolase. Isolation of 1,2-cyclohexanedione-labeled peptide by chemisorption chromatography.
    Patthy L; Váradi A; Thész J; Kovács K
    Eur J Biochem; 1979 Sep; 99(2):309-13. PubMed ID: 499203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An essential arginine residue in human prostatic acid phosphatase.
    McTigue JJ; Van Etten RL
    Biochim Biophys Acta; 1978 Apr; 523(2):422-9. PubMed ID: 656436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding and refolding of hen egg-white riboflavin binding protein.
    Allen S; Stevens L; Duncan D; Kelly SM; Price NC
    Int J Biol Macromol; 1992 Dec; 14(6):333-7. PubMed ID: 1476988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of riboflavin carrier proteins from pregnant human and umbilical cord serum: similarities with chicken egg riboflavin carrier protein.
    Visweswariah SS; Adiga PR
    Biosci Rep; 1987 Jul; 7(7):563-71. PubMed ID: 3689880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of arginine residues in ovine lutropin: reversible modification by 1,2-cyclohexanedione.
    Sairam MR
    Arch Biochem Biophys; 1976 Sep; 176(1):197-205. PubMed ID: 970955
    [No Abstract]   [Full Text] [Related]  

  • 16. Disulfide bonds in egg-white riboflavin-binding protein. Chemical reduction studies.
    Kozik A
    Eur J Biochem; 1982 Jan; 121(2):395-400. PubMed ID: 7060555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of apolipoprotein C-II with 1,2-cyclohexanedione and 2,3-butanedione. Role of arginine in the activation of lipoprotein lipase.
    Holdsworth G; Noel JG; Stedje K; Shinomiya M; Jackson RL
    Biochim Biophys Acta; 1984 Jul; 794(3):472-8. PubMed ID: 6743677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboflavin-binding protein. Concentration and fractional saturation in chicken eggs as a function of dietary riboflavin.
    White HB; Armstrong J; Whitehead CC
    Biochem J; 1986 Sep; 238(3):671-5. PubMed ID: 3800955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of the thiamin-binding protein from chicken egg yolk.
    Muniyappa K; Adiga PR
    Biochem J; 1981 Mar; 193(3):679-85. PubMed ID: 7197919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues.
    Patthy L; Smith EL
    J Biol Chem; 1975 Jan; 250(2):557-64. PubMed ID: 234432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.