BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 31816152)

  • 1. Decoding and mapping task states of the human brain via deep learning.
    Wang X; Liang X; Jiang Z; Nguchu BA; Zhou Y; Wang Y; Wang H; Li Y; Zhu Y; Wu F; Gao JH; Qiu B
    Hum Brain Mapp; 2020 Apr; 41(6):1505-1519. PubMed ID: 31816152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.
    Li H; Fan Y
    Neuroimage; 2019 Nov; 202():116059. PubMed ID: 31362049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding Brain States From fMRI Signals by Using Unsupervised Domain Adaptation.
    Gao Y; Zhang Y; Cao Z; Guo X; Zhang J
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1677-1685. PubMed ID: 31514162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    J Integr Neurosci; 2017; 16(3):275-289. PubMed ID: 28891512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.
    Rastegarnia S; St-Laurent M; DuPre E; Pinsard B; Bellec P
    Neuroimage; 2023 Dec; 283():120395. PubMed ID: 37832707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification.
    Hwang J; Lustig N; Jung M; Lee JH
    Heliyon; 2023 Jul; 9(7):e18086. PubMed ID: 37519689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention module improves both performance and interpretability of four-dimensional functional magnetic resonance imaging decoding neural network.
    Jiang Z; Wang Y; Shi C; Wu Y; Hu R; Chen S; Hu S; Wang X; Qiu B
    Hum Brain Mapp; 2022 Jun; 43(8):2683-2692. PubMed ID: 35212436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis.
    Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K
    Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Deep Learning Model for Task-Evoked fMRI Data Classification.
    Huang X; Xiao J; Wu C
    Comput Intell Neurosci; 2021; 2021():6660866. PubMed ID: 34422034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task sub-type states decoding via group deep bidirectional recurrent neural network.
    Zhao S; Fang L; Yang Y; Tang G; Luo G; Han J; Liu T; Hu X
    Med Image Anal; 2024 May; 94():103136. PubMed ID: 38489895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Cordes D
    Med Image Anal; 2020 Feb; 60():101622. PubMed ID: 31811979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging.
    Long Z; Wang Y; Liu X; Yao L
    PLoS One; 2019; 14(4):e0214937. PubMed ID: 30970029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-subject brain decoding with multi-task feature selection.
    Wang L; Tang X; Liu W; Peng Y; Gao T; Xu Y
    Biomed Mater Eng; 2014; 24(6):2987-94. PubMed ID: 25227006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.