These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 31816234)
1. Making Soup: Preparing and Validating Models of the Bacterial Cytoplasm for Molecular Simulation. Oliveira Bortot L; Bashardanesh Z; van der Spoel D J Chem Inf Model; 2020 Jan; 60(1):322-331. PubMed ID: 31816234 [TBL] [Abstract][Full Text] [Related]
2. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. McGuffee SR; Elcock AH PLoS Comput Biol; 2010 Mar; 6(3):e1000694. PubMed ID: 20221255 [TBL] [Abstract][Full Text] [Related]
3. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. Yu I; Mori T; Ando T; Harada R; Jung J; Sugita Y; Feig M Elife; 2016 Nov; 5():. PubMed ID: 27801646 [TBL] [Abstract][Full Text] [Related]
4. Diffusion of proteins in crowded solutions studied by docking-based modeling. Singh A; Kundrotas PJ; Vakser IA J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39225532 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model. Ando T; Yu I; Feig M; Sugita Y J Phys Chem B; 2016 Nov; 120(46):11856-11865. PubMed ID: 27797534 [TBL] [Abstract][Full Text] [Related]
6. Coarse-grained simulations of proton-dependent conformational changes in lactose permease. Jewel Y; Dutta P; Liu J Proteins; 2016 Aug; 84(8):1067-74. PubMed ID: 27090495 [TBL] [Abstract][Full Text] [Related]
7. An analytical correlated random walk model and its application to understand subdiffusion in crowded environment. Hasnain S; Bandyopadhyay P J Chem Phys; 2015 Sep; 143(11):114104. PubMed ID: 26395684 [TBL] [Abstract][Full Text] [Related]
8. Contribution of different macromolecules to the diffusion of a 40 nm particle in Escherichia coli. Losa J; Heinemann M Biophys J; 2024 May; 123(10):1211-1221. PubMed ID: 38555507 [TBL] [Abstract][Full Text] [Related]
9. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Ridgway D; Broderick G; Lopez-Campistrous A; Ru'aini M; Winter P; Hamilton M; Boulanger P; Kovalenko A; Ellison MJ Biophys J; 2008 May; 94(10):3748-59. PubMed ID: 18234819 [TBL] [Abstract][Full Text] [Related]
10. In-Cell Protein-Protein Contacts: Transient Interactions in the Crowd. Rickard MM; Zhang Y; Gruebele M; Pogorelov TV J Phys Chem Lett; 2019 Sep; 10(18):5667-5673. PubMed ID: 31483661 [TBL] [Abstract][Full Text] [Related]
11. Visualizing protein motion in Couette flow by all-atom molecular dynamics. Walinda E; Morimoto D; Shirakawa M; Scheler U; Sugase K Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129383. PubMed ID: 31201838 [TBL] [Abstract][Full Text] [Related]
12. Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress. Mika JT; van den Bogaart G; Veenhoff L; Krasnikov V; Poolman B Mol Microbiol; 2010 Jul; 77(1):200-7. PubMed ID: 20487282 [TBL] [Abstract][Full Text] [Related]
13. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Weiss M; Elsner M; Kartberg F; Nilsson T Biophys J; 2004 Nov; 87(5):3518-24. PubMed ID: 15339818 [TBL] [Abstract][Full Text] [Related]
14. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. Zimmerman SB; Trach SO J Mol Biol; 1991 Dec; 222(3):599-620. PubMed ID: 1748995 [TBL] [Abstract][Full Text] [Related]
16. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Ando T; Skolnick J Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18457-62. PubMed ID: 20937902 [TBL] [Abstract][Full Text] [Related]
17. Multi-Conformation Monte Carlo: A Method for Introducing Flexibility in Efficient Simulations of Many-Protein Systems. Prytkova V; Heyden M; Khago D; Freites JA; Butts CT; Martin RW; Tobias DJ J Phys Chem B; 2016 Aug; 120(33):8115-26. PubMed ID: 27063730 [TBL] [Abstract][Full Text] [Related]
18. Definition of the Minimal Contents for the Molecular Simulation of the Yeast Cytoplasm. Kompella VPS; Stansfield I; Romano MC; Mancera RL Front Mol Biosci; 2019; 6():97. PubMed ID: 31632983 [TBL] [Abstract][Full Text] [Related]
19. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. Lipkow K; Andrews SS; Bray D J Bacteriol; 2005 Jan; 187(1):45-53. PubMed ID: 15601687 [TBL] [Abstract][Full Text] [Related]
20. Intracellular crowding effects on the self-association of the bacterial cell division protein FtsZ. Naddaf L; Sayyed-Ahmad A Arch Biochem Biophys; 2014 Dec; 564():12-9. PubMed ID: 25218002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]