BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31816285)

  • 1. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes.
    Hogan JD; Keenan JL; Luo L; Ibn-Salem J; Lamba A; Schatzberg D; Piacentino ML; Zuch DT; Core AB; Blumberg C; Timmermann B; Grau JH; Speranza E; Andrade-Navarro MA; Irie N; Poustka AJ; Bradham CA
    Dev Biol; 2020 Apr; 460(2):139-154. PubMed ID: 31816285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo.
    Slota LA; McClay DR
    Dev Biol; 2018 Mar; 435(2):138-149. PubMed ID: 29331498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks.
    Massri AJ; McDonald B; Wray GA; McClay DR
    Evodevo; 2023 Jun; 14(1):10. PubMed ID: 37322563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris.
    Israel JW; Martik ML; Byrne M; Raff EC; Raff RA; McClay DR; Wray GA
    PLoS Biol; 2016 Mar; 14(3):e1002391. PubMed ID: 26943850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin
    Slota LA; Miranda EM; McClay DR
    Evodevo; 2019; 10():2. PubMed ID: 30792836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics.
    Gildor T; Ben-Tabou de-Leon S
    PLoS Genet; 2015 Jul; 11(7):e1005435. PubMed ID: 26230518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo.
    Massri AJ; Greenstreet L; Afanassiev A; Berrio A; Wray GA; Schiebinger G; McClay DR
    Development; 2021 Oct; 148(19):. PubMed ID: 34463740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus.
    Tu Q; Cameron RA; Davidson EH
    Dev Biol; 2014 Jan; 385(2):160-7. PubMed ID: 24291147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin.
    Pieplow C; Wessel G
    Mol Reprod Dev; 2023 May; 90(5):310-322. PubMed ID: 37039283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model.
    Nesbit KT; Fleming T; Batzel G; Pouv A; Rosenblatt HD; Pace DA; Hamdoun A; Lyons DC
    Methods Cell Biol; 2019; 150():105-123. PubMed ID: 30777173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.
    Hinman VF; Cheatle Jarvela AM
    Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva.
    Perillo M; Wang YJ; Leach SD; Arnone MI
    BMC Evol Biol; 2016 May; 16(1):117. PubMed ID: 27230062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell RNA sequencing of the
    Paganos P; Voronov D; Musser JM; Arendt D; Arnone MI
    Elife; 2021 Nov; 10():. PubMed ID: 34821556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses.
    Erkenbrack EM; Davidson EH
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4075-84. PubMed ID: 26170318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the toxic benthic dinoflagellate Ostreopsis cf. ovata on fertilization and early development of the sea urchin Lytechinus variegatus.
    Neves RAF; Contins M; Nascimento SM
    Mar Environ Res; 2018 Apr; 135():11-17. PubMed ID: 29402518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosomal-Level Genome Assembly of the Painted Sea Urchin Lytechinus pictus: A Genetically Enabled Model System for Cell Biology and Embryonic Development.
    Warner JF; Lord JW; Schreiter SA; Nesbit KT; Hamdoun A; Lyons DC
    Genome Biol Evol; 2021 Apr; 13(4):. PubMed ID: 33769486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Changes in the Chromatin Landscape Contribute to Reorganization of a Developmental Gene Network During Rapid Life History Evolution in Sea Urchins.
    Davidson PL; Byrne M; Wray GA
    Mol Biol Evol; 2022 Sep; 39(9):. PubMed ID: 35946348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains.
    McClay DR; Miranda E; Feinberg SL
    Development; 2018 Nov; 145(21):. PubMed ID: 30413529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.