These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 31816293)
1. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Orlans HO; Barnard AR; MacLaren RE Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293 [TBL] [Abstract][Full Text] [Related]
2. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Orlans HO; Barnard AR; PatrĂcio MI; McClements ME; MacLaren RE Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751 [TBL] [Abstract][Full Text] [Related]
3. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
4. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
5. Compensation of inner retina to early-stage photoreceptor degeneration in a Rho Wang B; Arbuckle RK; Davoli KA; Clinger OD; Brown R; Sahel JA; Chen Y; Pi S Exp Eye Res; 2024 Mar; 240():109826. PubMed ID: 38340947 [TBL] [Abstract][Full Text] [Related]
6. Sigma 1 receptor activation improves retinal structure and function in the Rho Barwick SR; Xiao H; Wolff D; Wang J; Perry E; Marshall B; Smith SB Exp Eye Res; 2023 May; 230():109462. PubMed ID: 37003581 [TBL] [Abstract][Full Text] [Related]
7. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136 [TBL] [Abstract][Full Text] [Related]
8. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395 [TBL] [Abstract][Full Text] [Related]
9. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Liu X; Jia R; Meng X; Li Y; Yang L Exp Eye Res; 2022 Feb; 215():108893. PubMed ID: 34919893 [TBL] [Abstract][Full Text] [Related]
10. Retinal histopathology in eyes from patients with autosomal dominant retinitis pigmentosa caused by rhodopsin mutations. Bonilha VL; Rayborn ME; Bell BA; Marino MJ; Beight CD; Pauer GJ; Traboulsi EI; Hollyfield JG; Hagstrom SA Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2161-9. PubMed ID: 26202387 [TBL] [Abstract][Full Text] [Related]
11. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226 [TBL] [Abstract][Full Text] [Related]
12. Optical Coherence Tomography of Animal Models of Retinitis Pigmentosa: From Animal Studies to Clinical Applications. Nakazawa M; Hara A; Ishiguro SI Biomed Res Int; 2019; 2019():8276140. PubMed ID: 31781647 [TBL] [Abstract][Full Text] [Related]
13. Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations. Aleman TS; Cideciyan AV; Sumaroka A; Windsor EA; Herrera W; White DA; Kaushal S; Naidu A; Roman AJ; Schwartz SB; Stone EM; Jacobson SG Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1580-90. PubMed ID: 18385078 [TBL] [Abstract][Full Text] [Related]
14. Mislocalization and degradation of human P23H-rhodopsin-GFP in a knockin mouse model of retinitis pigmentosa. Price BA; Sandoval IM; Chan F; Simons DL; Wu SM; Wensel TG; Wilson JH Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9728-36. PubMed ID: 22110080 [TBL] [Abstract][Full Text] [Related]
15. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish. Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977 [TBL] [Abstract][Full Text] [Related]
16. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414 [TBL] [Abstract][Full Text] [Related]
17. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R; Oglesby E; Marsh-Armstrong N Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367 [TBL] [Abstract][Full Text] [Related]
18. Clinically Relevant Outcome Measures for the I307N Rhodopsin Mouse: A Model of Inducible Autosomal Dominant Retinitis Pigmentosa. Massengill MT; Young B; Patel D; Jafri F; Sabogal E; Ash N; Li H; Ildefonso CJ; Lewin AS Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5417-5430. PubMed ID: 30452595 [TBL] [Abstract][Full Text] [Related]
19. Conditional loss of Spata7 in photoreceptors causes progressive retinal degeneration in mice. Eblimit A; Agrawal SA; Thomas K; Anastassov IA; Abulikemu T; Moayedi Y; Mardon G; Chen R Exp Eye Res; 2018 Jan; 166():120-130. PubMed ID: 29100828 [TBL] [Abstract][Full Text] [Related]
20. Bone spicule pigment formation in retinitis pigmentosa: insights from a mouse model. Jaissle GB; May CA; van de Pavert SA; Wenzel A; Claes-May E; Giessl A; Szurman P; Wolfrum U; Wijnholds J; Fischer MD; Humphries P; Seeliger MW Graefes Arch Clin Exp Ophthalmol; 2010 Aug; 248(8):1063-70. PubMed ID: 20012642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]