These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 31816293)
21. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Robichaux MA; Nguyen V; Chan F; Kailasam L; He F; Wilson JH; Wensel TG Dis Model Mech; 2022 May; 15(5):. PubMed ID: 35275162 [TBL] [Abstract][Full Text] [Related]
22. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. Haeri M; Knox BE PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148 [TBL] [Abstract][Full Text] [Related]
23. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255 [TBL] [Abstract][Full Text] [Related]
24. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert LC; Birnbach CD; Reh TA J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070 [TBL] [Abstract][Full Text] [Related]
25. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
26. Temporal Contrast Sensitivity Increases despite Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. Pasquale RL; Guo Y; Umino Y; Knox B; Solessio E eNeuro; 2021; 8(2):. PubMed ID: 33509952 [TBL] [Abstract][Full Text] [Related]
27. Characterization and allogeneic transplantation of a novel transgenic cone-rich donor mouse line. Liu YV; Teng D; Konar GJ; Agakishiev D; Biggs-Garcia A; Harris-Bookman S; McNally MM; Garzon C; Sastry S; Singh MS Exp Eye Res; 2021 Sep; 210():108715. PubMed ID: 34343570 [TBL] [Abstract][Full Text] [Related]
28. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724 [TBL] [Abstract][Full Text] [Related]
29. Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog. Iwabe S; Ying GS; Aguirre GD; Beltran WA Exp Eye Res; 2016 May; 146():341-353. PubMed ID: 27085210 [TBL] [Abstract][Full Text] [Related]
30. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. Sakami S; Imanishi Y; Palczewski K FASEB J; 2019 Mar; 33(3):3680-3692. PubMed ID: 30462532 [TBL] [Abstract][Full Text] [Related]
31. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography. Monai N; Yamauchi K; Tanabu R; Gonome T; Ishiguro SI; Nakazawa M PLoS One; 2018; 13(3):e0193778. PubMed ID: 29522537 [TBL] [Abstract][Full Text] [Related]
33. Neuronatin is a stress-responsive protein of rod photoreceptors. Shinde V; Pitale PM; Howse W; Gorbatyuk O; Gorbatyuk M Neuroscience; 2016 Jul; 328():1-8. PubMed ID: 27109921 [TBL] [Abstract][Full Text] [Related]
34. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Mao H; Gorbatyuk MS; Rossmiller B; Hauswirth WW; Lewin AS Hum Gene Ther; 2012 Apr; 23(4):356-66. PubMed ID: 22289036 [TBL] [Abstract][Full Text] [Related]
35. Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa. Wang T; Yao J; Jia L; Fort PE; Zacks DN Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008496 [TBL] [Abstract][Full Text] [Related]
36. Analysis of Early Cone Dysfunction in an In Vivo Model of Rod-Cone Dystrophy. Hassall MM; McClements ME; Barnard AR; Patricio MÍ; Aslam SA; Maclaren RE Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32842706 [TBL] [Abstract][Full Text] [Related]
37. Targeted disruption of the endogenous zebrafish Zelinka CP; Sotolongo-Lopez M; Fadool JM Mol Vis; 2018; 24():587-602. PubMed ID: 30210230 [TBL] [Abstract][Full Text] [Related]
38. Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Gopalakrishnan S; Mehrvar S; Maleki S; Schmitt H; Summerfelt P; Dubis AM; Abroe B; Connor TB; Carroll J; Huddleston W; Ranji M; Eells JT Sci Rep; 2020 Nov; 10(1):20382. PubMed ID: 33230161 [TBL] [Abstract][Full Text] [Related]
39. Ablation of C/EBP homologous protein does not protect T17M RHO mice from retinal degeneration. Nashine S; Bhootada Y; Lewin AS; Gorbatyuk M PLoS One; 2013; 8(4):e63205. PubMed ID: 23646198 [TBL] [Abstract][Full Text] [Related]
40. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. Takita S; Jahan S; S Imanishi S; Harikrishnan H; LePage D; Mann RJ; Conlon RA; Miyagi M; Imanishi Y FASEB J; 2024 Apr; 38(8):e23606. PubMed ID: 38648465 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]