These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31816310)

  • 1. Changes in spinal cord stiffness in the course of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.
    Pyka-Fościak G; Zemła J; Lis GJ; Litwin JA; Lekka M
    Arch Biochem Biophys; 2020 Feb; 680():108221. PubMed ID: 31816310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
    Prinz J; Karacivi A; Stormanns ER; Recks MS; Kuerten S
    PLoS One; 2015; 10(12):e0144847. PubMed ID: 26658811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice.
    Berard JL; Wolak K; Fournier S; David S
    Glia; 2010 Mar; 58(4):434-45. PubMed ID: 19780195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histopatological parameters of the spinal cord in different phases of experimental autoimmune encephalomyelitis. A mouse model of multiple sclerosis examined by classical stainings combined with immunohistochemistry.
    Pyka-Fosciak G; Fosciak M; Wojcik B; Lis GJ; Litwin JA
    J Physiol Pharmacol; 2023 Aug; 74(4):. PubMed ID: 37865962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation.
    Guillot F; Garcia A; Salou M; Brouard S; Laplaud DA; Nicot AB
    J Neuroinflammation; 2015 Jul; 12():130. PubMed ID: 26141738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical analysis of spinal cord components in mouse model of experimental autoimmune encephalomyelitis.
    Pyka-Fosciak G; Stasiolek M; Litwin JA
    Folia Histochem Cytobiol; 2018; 56(3):151-158. PubMed ID: 30187907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in stiffness of the optic nerve and involvement of neurofilament light chains in the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
    Pyka-Fościak G; Fościak M; Pabijan J; Lis GJ; Litwin JA; Lekka M
    Biochim Biophys Acta Mol Basis Dis; 2023 Oct; 1869(7):166796. PubMed ID: 37400000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis.
    Bando Y; Nomura T; Bochimoto H; Murakami K; Tanaka T; Watanabe T; Yoshida S
    Neurochem Int; 2015 Feb; 81():16-27. PubMed ID: 25595039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric magnetic resonance imaging for detection of pathological changes in the central nervous system of a mouse model of multiple sclerosis in vivo.
    Althobity AA; Khan N; Sandrock CJ; Woodruff TM; Cowin GJ; Brereton IM; Kurniawan ND
    NMR Biomed; 2023 Oct; 36(10):e4964. PubMed ID: 37122101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connexin 30 Deficiency Attenuates Chronic but Not Acute Phases of Experimental Autoimmune Encephalomyelitis Through Induction of Neuroprotective Microglia.
    Fang M; Yamasaki R; Li G; Masaki K; Yamaguchi H; Fujita A; Isobe N; Kira JI
    Front Immunol; 2018; 9():2588. PubMed ID: 30464764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis.
    Chuhutin A; Hansen B; Wlodarczyk A; Owens T; Shemesh N; Jespersen SN
    Neuroimage; 2020 Mar; 208():116406. PubMed ID: 31830588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice.
    Bannerman PG; Hahn A
    J Neurol Sci; 2007 Sep; 260(1-2):23-32. PubMed ID: 17493638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord histopathology of MOG peptide 35-55-induced experimental autoimmune encephalomyelitis is time- and score-dependent.
    Recks MS; Addicks K; Kuerten S
    Neurosci Lett; 2011 May; 494(3):227-31. PubMed ID: 21406210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1
    Chrobok NL; Jaouen A; Fenrich KK; Bol JG; Wilhelmus MM; Drukarch B; Debarbieux F; van Dam AM
    Amino Acids; 2017 Mar; 49(3):643-658. PubMed ID: 27826792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis.
    Recks MS; Stormanns ER; Bader J; Arnhold S; Addicks K; Kuerten S
    Clin Immunol; 2013 Oct; 149(1):32-45. PubMed ID: 23899992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical changes in the liver tissue induced by a mouse model of multiple sclerosis (EAE) and the effect of anti-VLA-4 mAb treatment.
    Pyka-Fościak G; Zemła J; Lekki J; Wójcik B; Lis GJ; Litwin JA; Lekka M
    Arch Biochem Biophys; 2022 Oct; 728():109356. PubMed ID: 35868535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Proteome Analysis of Brain Subregions and Spinal Cord from Experimental Autoimmune Encephalomyelitis Mice by TMT-Based Mass Spectrometry.
    Hasan M; Min H; Rahaman KA; Muresan AR; Kim H; Han D; Kwon OS
    Proteomics; 2019 Mar; 19(5):e1800355. PubMed ID: 30724464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain gray matter astroglia-specific connexin 43 ablation attenuates spinal cord inflammatory demyelination.
    Une H; Yamasaki R; Nagata S; Yamaguchi H; Nakamuta Y; Indiasari UC; Cui Y; Shinoda K; Masaki K; Götz M; Kira JI
    J Neuroinflammation; 2021 Jun; 18(1):126. PubMed ID: 34090477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of voltage-gated calcium channels in astrocytes decreases neuroinflammation and demyelination in a murine model of multiple sclerosis.
    Denaroso GE; Smith Z; Angeliu CG; Cheli VT; Wang C; Paez PM
    J Neuroinflammation; 2023 Nov; 20(1):263. PubMed ID: 37964385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model.
    Choi BY; Jang BG; Kim JH; Seo JN; Wu G; Sohn M; Chung TN; Suh SW
    Neurobiol Dis; 2013 Jun; 54():382-91. PubMed ID: 23360710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.