These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31816721)

  • 1. Automation of mass spectrometric detection of analytes and related workflows: A review.
    Elpa DP; Prabhu GRD; Wu SP; Tay KS; Urban PL
    Talanta; 2020 Feb; 208():120304. PubMed ID: 31816721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated 96-well liquid-liquid extraction for analysis of biological samples by liquid chromatography with tandem mass spectrometry.
    Peng SX; Branch TM; King SL
    Anal Chem; 2001 Feb; 73(3):708-14. PubMed ID: 11217789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automated sample preparation for detection of 72 doping-related substances.
    Cuervo D; Díaz-Rodríguez P; Muñoz-Guerra J
    Drug Test Anal; 2014 Jun; 6(6):516-27. PubMed ID: 24167121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples.
    Marinova M; Artusi C; Brugnolo L; Antonelli G; Zaninotto M; Plebani M
    Clin Biochem; 2013 Nov; 46(16-17):1723-7. PubMed ID: 24012696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of automation on mass spectrometry.
    Zhang YV; Rockwood A
    Clin Chim Acta; 2015 Oct; 450():298-303. PubMed ID: 26341893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated sample preparation approach for routine liquid chromatography tandem-mass spectrometry measurement of the alcohol biomarkers phosphatidylethanol 16:0/18:1, 16:0/16:0 and 18:1/18:1.
    Casati S; Ravelli A; Angeli I; Durello R; Minoli M; Orioli M
    J Chromatogr A; 2019 Mar; 1589():1-9. PubMed ID: 30598290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automated tandem mass spectrometric (MS/MS) triple quadrupole operating parameter optimization for high-throughput MS/MS detection workflows.
    Geddes K; Adamson G; Dube N; Crathern S; King RC
    Rapid Commun Mass Spectrom; 2009 May; 23(9):1303-12. PubMed ID: 19334293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AutonoMS: Automated Ion Mobility Metabolomic Fingerprinting.
    Reder GK; Bjurström EY; Brunnsåker D; Kronström F; Lasin P; Tiukova I; Savolainen OI; Dodds JN; May JC; Wikswo JP; McLean JA; King RD
    J Am Soc Mass Spectrom; 2024 Mar; 35(3):542-550. PubMed ID: 38310603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated high-capacity on-line extraction and bioanalysis of dried blood spot samples using liquid chromatography/high-resolution accurate mass spectrometry.
    Oliveira RV; Henion J; Wickremsinhe ER
    Rapid Commun Mass Spectrom; 2014 Nov; 28(22):2415-26. PubMed ID: 25303470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry and total laboratory automation: opportunities and drawbacks.
    Salvagno GL; Danese E; Lippi G
    Clin Chem Lab Med; 2020 Jun; 58(6):994-1001. PubMed ID: 32191622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic devices for high-throughput proteome analyses.
    Chao TC; Hansmeier N
    Proteomics; 2013 Feb; 13(3-4):467-79. PubMed ID: 23135952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics.
    Chiu SH; Urban PL
    Biosens Bioelectron; 2015 Feb; 64():260-8. PubMed ID: 25232666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher throughput bioanalysis by automation of a protein precipitation assay using a 96-well format with detection by LC-MS/MS.
    Watt AP; Morrison D; Locker KL; Evans DC
    Anal Chem; 2000 Mar; 72(5):979-84. PubMed ID: 10739201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shotgun Proteomics Sample Processing Automated by an Open-Source Lab Robot.
    Han Y; Thomas CT; Wennersten SA; Lau E; Lam MPY
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34779440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in Automated Urinalysis.
    Oyaert M; Delanghe J
    Ann Lab Med; 2019 Jan; 39(1):15-22. PubMed ID: 30215225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas pressure assisted microliquid-liquid extraction coupled online to direct infusion mass spectrometry: a new automated screening platform for bioanalysis.
    Raterink RJ; Witkam Y; Vreeken RJ; Ramautar R; Hankemeier T
    Anal Chem; 2014 Oct; 86(20):10323-30. PubMed ID: 25243401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automation-assisted generic approach for biological sample preparation and LC-MS/MS method validation.
    Zhang J; Wei S; Ayres DW; Smith HT; Tse FL
    Bioanalysis; 2011 Sep; 3(17):1975-86. PubMed ID: 21899506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Analysis of Clozapine and Norclozapine in Human Plasma Using Novel Extraction Plate Technology and Flow-Injection Tandem Mass Spectrometry.
    Couchman L; Subramaniam K; Fisher DS; Belsey SL; Handley SA; Flanagan RJ
    Ther Drug Monit; 2016 Feb; 38(1):42-9. PubMed ID: 26349082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current status and future trends on automated multidimensional separation techniques employing sorbent-based extraction columns.
    Maciel EVS; de Toffoli AL; Lanças FM
    J Sep Sci; 2019 Jan; 42(1):258-272. PubMed ID: 30289207
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.