These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31816764)

  • 21. Molecularly Imprinted Dispersive Solid-Phase Extraction for the Determination of Triazine Herbicides in Grape Seeds by High-Performance Liquid Chromatography.
    Li X; Wang Y; Sun Q; Xu B; Yang Z; Wang X
    J Chromatogr Sci; 2016; 54(5):871-7. PubMed ID: 27013667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and application of water-compatible molecularly imprinted polymers for the selective extraction of carbamazepine from environmental waters.
    Kadhirvel P; Combès A; Bordron L; Pichon V
    Anal Bioanal Chem; 2019 Mar; 411(8):1525-1536. PubMed ID: 30710206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.
    Fu N; Li L; Liu X; Fu N; Zhang C; Hu L; Li D; Tang B; Zhu T
    J Chromatogr A; 2017 Dec; 1530():23-34. PubMed ID: 29157609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography-high resolution mass spectrometry.
    Ballesteros-Vivas D; Alvarez-Rivera G; Ibánez E; Parada-Alfonso F; Cifuentes A
    J Chromatogr A; 2019 Jun; 1595():144-157. PubMed ID: 30846312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liquid chromatography-quadrupole time of flight tandem mass spectrometry-based targeted metabolomic study for varietal discrimination of grapes according to plant sterols content.
    Millán L; Sampedro MC; Sánchez A; Delporte C; Van Antwerpen P; Goicolea MA; Barrio RJ
    J Chromatogr A; 2016 Jul; 1454():67-77. PubMed ID: 27268521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of molecularly imprinted polymers for the selective recognition of the bioactive polyphenol, (E)-resveratrol.
    Schwarz LJ; Danylec B; Harris SJ; Boysen RI; Hearn MT
    J Chromatogr A; 2011 Apr; 1218(16):2189-95. PubMed ID: 21411106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS.
    Zhao M; Shao H; He Y; Li H; Yan M; Jiang Z; Wang J; Abd El-Aty AM; Hacımüftüoğlu A; Yan F; Wang Y; She Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Sep; 1125():121714. PubMed ID: 31357106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation study of rutin as template from magnetic composite molecularly imprinted polymer supernatant samples by liquid chromatography-mass spectrometry.
    Ma X; Wang F; Hang T; Dramou P
    J Chromatogr A; 2022 Jun; 1673():463199. PubMed ID: 35691107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of guanidinium terminus-molecularly imprinted polymers for selective recognition and solid-phase extraction (SPE) of [arginine]-microcystins.
    Mbukwa EA; Msagati TA; Mamba BB
    Anal Bioanal Chem; 2013 May; 405(12):4253-67. PubMed ID: 23430182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids.
    Ashraf-Khorassani M; Taylor LT
    J Agric Food Chem; 2004 May; 52(9):2440-4. PubMed ID: 15113138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization, in-house validation, and application of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the quantification of selected polyphenolic compounds in leaves of grapevine (Vitis vinifera L.).
    Schoedl K; Forneck A; Sulyok M; Schuhmacher R
    J Agric Food Chem; 2011 Oct; 59(20):10787-94. PubMed ID: 21910493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractional factorial design-based optimisation and application of an extraction and UPLC-MS/MS detection method for the quantification of phytosterols in food, feed and beverages low in phytosterols.
    Decloedt AI; Van Landschoot A; Vanhaecke L
    Anal Bioanal Chem; 2016 Nov; 408(27):7731-7744. PubMed ID: 27565790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound assisted combined molecularly imprinted polymer for the selective micro-solid phase extraction and determination of aflatoxins in fish feed using liquid chromatography-tandem mass spectrometry.
    Jayasinghe GDTM; Domínguez-González R; Bermejo-Barrera P; Moreda-Piñeiro A
    J Chromatogr A; 2020 Jan; 1609():460431. PubMed ID: 31431356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of water-compatible molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry for the detection of six sulfonamides in animal-derived foods.
    Zhao X; Wang J; Wang J; Wang S
    J Chromatogr A; 2018 Nov; 1574():9-17. PubMed ID: 30266232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
    Baeza AN; Urraca JL; Chamorro R; Orellana G; Castellari M; Moreno-Bondi MC
    J Chromatogr A; 2016 Nov; 1474():121-129. PubMed ID: 27816225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.
    Contin M; Flor S; Martinefski M; Lucangioli S; Tripodi V
    Anal Chim Acta; 2014 Jan; 807():67-74. PubMed ID: 24356222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma.
    Figueiredo EC; Sparrapan R; Sanvido GB; Santos MG; Arruda MA; Eberlin MN
    Analyst; 2011 Sep; 136(18):3753-7. PubMed ID: 21776492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and validation of an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry method for analyzing microbial-derived grape polyphenol metabolites.
    Zhao D; Yuan B; Carry E; Pasinetti GM; Ho L; Faith J; Mogno I; Simon J; Wu Q
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():34-45. PubMed ID: 30241072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.
    Khanal RC; Howard LR; Prior RL
    J Food Sci; 2009 Aug; 74(6):H174-82. PubMed ID: 19723202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool.
    Pérez-Navarro J; Izquierdo-Cañas PM; Mena-Morales A; Martínez-Gascueña J; Chacón-Vozmediano JL; García-Romero E; Hermosín-Gutiérrez I; Gómez-Alonso S
    Food Chem; 2019 Oct; 295():350-360. PubMed ID: 31174768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.