These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 31816773)
1. Echelle LIBS-Raman system: A versatile tool for mineralogical and archaeological applications. Muhammed Shameem KM; Dhanada VS; Harikrishnan S; George SD; Kartha VB; Santhosh C; Unnikrishnan VK Talanta; 2020 Feb; 208():120482. PubMed ID: 31816773 [TBL] [Abstract][Full Text] [Related]
2. A hyphenated echelle LIBS-Raman system for multi-purpose applications. Muhammed Shameem KM; Dhanada VS; Unnikrishnan VK; George SD; Kartha VB; Santhosh C Rev Sci Instrum; 2018 Jul; 89(7):073108. PubMed ID: 30068097 [TBL] [Abstract][Full Text] [Related]
3. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Sharma SK; Misra AK; Lucey PG; Lentz RC Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470 [TBL] [Abstract][Full Text] [Related]
4. Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Sharma SK; Lucey PG; Ghosh M; Hubble HW; Horton KA Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2391-407. PubMed ID: 12909150 [TBL] [Abstract][Full Text] [Related]
5. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
6. Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds. Singh J; Kumar R; Awasthi S; Singh V; Rai AK Food Chem; 2017 Apr; 221():1778-1783. PubMed ID: 27979160 [TBL] [Abstract][Full Text] [Related]
7. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003 [TBL] [Abstract][Full Text] [Related]
9. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Hoehse M; Paul A; Gornushkin I; Panne U Anal Bioanal Chem; 2012 Feb; 402(4):1443-50. PubMed ID: 21845528 [TBL] [Abstract][Full Text] [Related]
10. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy. Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998 [TBL] [Abstract][Full Text] [Related]
11. [Determination of as in industrial wastewater by laser-induced breakdown spectroscopy]. Lin ZX; Chang L; Li J; Liu LM Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1675-7. PubMed ID: 19810558 [TBL] [Abstract][Full Text] [Related]
12. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Wiens RC; Sharma SK; Thompson J; Misra A; Lucey PG Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2324-34. PubMed ID: 16029853 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236 [TBL] [Abstract][Full Text] [Related]
14. Modeling of laser-induced breakdown spectroscopic data analysis by an automatic classifier. Pokrajac DD; Sivakumar P; Markushin Y; Milovic D; Holness G; Liu J; Melikechi N; Rana M Int J Data Sci Anal; 2019; 8(2):213-220. PubMed ID: 31984220 [TBL] [Abstract][Full Text] [Related]
15. Laser-induced breakdown spectroscopy-Raman: An effective complementary approach to analyze renal-calculi. Muhammed Shameem KM; Chawla A; Mallya M; Barik BK; Unnikrishnan VK; Kartha VB; Santhosh C J Biophotonics; 2018 Jun; 11(6):e201700271. PubMed ID: 29411942 [TBL] [Abstract][Full Text] [Related]
16. Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy. Shah ML; Pulhani AK; Gupta GP; Suri BM Appl Opt; 2012 Jul; 51(20):4612-21. PubMed ID: 22781236 [TBL] [Abstract][Full Text] [Related]
17. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples. Choi S; Kim D; Yang J; Yoh JJ Appl Spectrosc; 2017 Apr; 71(4):678-685. PubMed ID: 28195495 [TBL] [Abstract][Full Text] [Related]
18. Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements. Syta O; Wagner B; Bulska E; Zielińska D; Żukowska GZ; Gonzalez J; Russo R Talanta; 2018 Mar; 179():784-791. PubMed ID: 29310308 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic characterization of samples from different environments in a Volcano-Glacial region in Iceland: Implications for in situ planetary exploration. Bower DM; Yang CSC; Hewagama T; Nixon CA; Aslam S; Whelley PL; Eigenbrode JL; Jin F; Ruliffson J; Kolasinski JR; Samuels AC Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120205. PubMed ID: 34332244 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic analysis of works of art using a single LIBS and pulsed Raman setup. Osticioli I; Mendes NF; Porcinai S; Cagnini A; Castellucci E Anal Bioanal Chem; 2009 Jun; 394(4):1033-41. PubMed ID: 19214480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]