These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 31816787)
21. Green aspects, developments and perspectives of liquid phase microextraction techniques. Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382 [TBL] [Abstract][Full Text] [Related]
22. Surfactant-Assisted Emulsification and Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorption Spectrometry. Bi Şgi N AT J AOAC Int; 2019 Sep; 102(5):1516-1522. PubMed ID: 31088596 [No Abstract] [Full Text] [Related]
23. Determination of Selected Pyrrolizidine Alkaloids in Honey by Dispersive Liquid-Liquid Microextraction and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Celano R; Piccinelli AL; Campone L; Russo M; Rastrelli L J Agric Food Chem; 2019 Aug; 67(31):8689-8699. PubMed ID: 31298525 [TBL] [Abstract][Full Text] [Related]
24. Simple and fast method for iron determination in white and red wines using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry. Maciel JV; Soares BM; Mandlate JS; Picoloto RS; Bizzi CA; Flores EM; Duarte FA J Agric Food Chem; 2014 Aug; 62(33):8340-5. PubMed ID: 25072643 [TBL] [Abstract][Full Text] [Related]
25. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples. Rajabi M; Kamalabadi M; Jamali MR; Zolgharnein J; Asanjarani N Hum Exp Toxicol; 2013 Jun; 32(6):620-31. PubMed ID: 22893353 [TBL] [Abstract][Full Text] [Related]
26. Trace level enrichment of lead from environmental water samples utilizing dispersive liquid-liquid microextraction and quantitative determination by graphite furnace atomic absorption spectrometry. Teju E; Tadesse B; Megersa N J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(7):833-42. PubMed ID: 24679091 [TBL] [Abstract][Full Text] [Related]
27. Study on the determination of heavy metals in water samples with ultrasound-assisted dispersive liquid-liquid microextraction prior to FAAS. Li Z; Yu G; Song J; Wang Q; Liu M; Yang Y Water Sci Technol; 2013; 67(2):247-53. PubMed ID: 23168620 [TBL] [Abstract][Full Text] [Related]
28. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Karadaş C; Kara D Food Chem; 2017 Apr; 220():242-248. PubMed ID: 27855895 [TBL] [Abstract][Full Text] [Related]
29. Novel coupling of surfactant assisted emulsification dispersive liquid-liquid microextraction with spectrophotometric determination for ultra trace nickel. Deng Q; Chen M; Kong L; Zhao X; Guo J; Wen X Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():64-9. PubMed ID: 23266677 [TBL] [Abstract][Full Text] [Related]
30. Separation-preconcentration of nickel and lead in food samples by a combination of solid-liquid-solid dispersive extraction using SiO2 nanoparticles, ionic liquid-based dispersive liquid-liquid micro-extraction. Jalbani N; Soylak M Talanta; 2015 Jan; 131():361-5. PubMed ID: 25281115 [TBL] [Abstract][Full Text] [Related]
31. Selective dispersive liquid-liquid microextraction and preconcentration of Ni(II) into a micro droplet followed by ETAAS determination using a yellow Schiff's base bisazanyl derivative. Alizadeh K; Nemati H; Zohrevand S; Hashemi P; Kakanejadifard A; Shamsipur M; Ganjali MR; Faridbod F Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):916-22. PubMed ID: 25427506 [TBL] [Abstract][Full Text] [Related]
32. Dispersive liquid-liquid microextraction and preconcentration of thallium species in water samples by two ionic liquids applied as ion-pairing reagent and extractant phase. Escudero LB; Berton P; Martinis EM; Olsina RA; Wuilloud RG Talanta; 2012 Jan; 88():277-83. PubMed ID: 22265499 [TBL] [Abstract][Full Text] [Related]
33. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry. Naeemullah ; Kazi TG; Tuzen M; Shah F; Afridi HI; Citak D Anal Chim Acta; 2014 Feb; 812():59-64. PubMed ID: 24491765 [TBL] [Abstract][Full Text] [Related]
34. An evaporation-assisted dispersive liquid-liquid microextraction technique as a simple tool for high performance liquid chromatography tandem-mass spectrometry determination of insecticides in wine. Timofeeva I; Kanashina D; Moskvin L; Bulatov A J Chromatogr A; 2017 Aug; 1512():107-114. PubMed ID: 28728929 [TBL] [Abstract][Full Text] [Related]
35. Determination of As in honey samples by magnetic ionic liquid-based dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Fiorentini EF; Canizo BV; Wuilloud RG Talanta; 2019 Jun; 198():146-153. PubMed ID: 30876542 [TBL] [Abstract][Full Text] [Related]
36. [Determination of nickel in urine by ultrasonic-assisted ionic liquid microextraction-graphite furnace atomic absorption spectrometry]. Ren YM; Mei Y; Fang RD Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2020 Oct; 38(10):767-769. PubMed ID: 33142384 [No Abstract] [Full Text] [Related]
37. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Jiang H; Qin Y; Hu B Talanta; 2008 Feb; 74(5):1160-5. PubMed ID: 18371765 [TBL] [Abstract][Full Text] [Related]
38. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry. Stanisz E; Zgoła-Grześkowiak A Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576 [TBL] [Abstract][Full Text] [Related]
39. Butan-1-ol as an extractant solvent in dispersive liquid-liquid microextraction in the spectrophotometric determination of aluminium. Lima LC; Papai R; Gaubeur I J Trace Elem Med Biol; 2018 Dec; 50():175-181. PubMed ID: 30262277 [TBL] [Abstract][Full Text] [Related]
40. A practical and nontarnishing method for the analysis of trace nickel in hydrogenated cottonseed oil by inductively coupled plasma/mass spectrometry with pressurized PTFE vessel acid digestion. Zhang N; Ding Z; Li H; Wang X; Shao X J AOAC Int; 2010; 93(1):323-6. PubMed ID: 20334194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]