These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 31816805)
41. Design strategies of fluorescent probes for selective detection among biothiols. Niu LY; Chen YZ; Zheng HR; Wu LZ; Tung CH; Yang QZ Chem Soc Rev; 2015 Oct; 44(17):6143-60. PubMed ID: 26027649 [TBL] [Abstract][Full Text] [Related]
42. Multi-channel colorimetric and fluorescent probes for differentiating between cysteine and glutathione/homocysteine. Song L; Jia T; Lu W; Jia N; Zhang W; Qian J Org Biomol Chem; 2014 Nov; 12(42):8422-7. PubMed ID: 25220214 [TBL] [Abstract][Full Text] [Related]
43. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine. Lim SY; Hong KH; Kim DI; Kwon H; Kim HJ J Am Chem Soc; 2014 May; 136(19):7018-25. PubMed ID: 24754635 [TBL] [Abstract][Full Text] [Related]
44. NIR two-photon fluorescent probe for biothiol detection and imaging of living cells in vivo. Xia X; Qian Y Analyst; 2018 Oct; 143(21):5218-5224. PubMed ID: 30270379 [TBL] [Abstract][Full Text] [Related]
45. A diazabenzoperylene derivative as ratiometric fluorescent probe for cysteine with super large Stokes shift. Wang S; Zhang Q; Chen S; Wang KP; Hu ZQ Anal Bioanal Chem; 2020 Apr; 412(11):2687-2696. PubMed ID: 32072211 [TBL] [Abstract][Full Text] [Related]
46. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. Niu LY; Guan YS; Chen YZ; Wu LZ; Tung CH; Yang QZ J Am Chem Soc; 2012 Nov; 134(46):18928-31. PubMed ID: 23121092 [TBL] [Abstract][Full Text] [Related]
47. Fluorescent probe for highly selective detection of cysteine in living cells. Zhou B; Wang B; Bai M; Dong M; Tang X Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122523. PubMed ID: 36868018 [TBL] [Abstract][Full Text] [Related]
48. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Xie JY; Li CY; Li YF; Fei J; Xu F; Ou-Yang J; Liu J Anal Chem; 2016 Oct; 88(19):9746-9752. PubMed ID: 27605432 [TBL] [Abstract][Full Text] [Related]
49. Nile-Red-Based Fluorescence Probe for Selective Detection of Biothiols, Computational Study, and Application in Cell Imaging. Rong X; Xu ZY; Yan JW; Meng ZZ; Zhu B; Zhang L Molecules; 2020 Oct; 25(20):. PubMed ID: 33066675 [TBL] [Abstract][Full Text] [Related]
50. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine. He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515 [TBL] [Abstract][Full Text] [Related]
51. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo. Chen W; Luo H; Liu X; Foley JW; Song X Anal Chem; 2016 Apr; 88(7):3638-46. PubMed ID: 26911923 [TBL] [Abstract][Full Text] [Related]
52. A Hg(2+)-mediated label-free fluorescent sensing strategy based on G-quadruplex formation for selective detection of glutathione and cysteine. Zhao J; Chen C; Zhang L; Jiang J; Shen G; Yu R Analyst; 2013 Mar; 138(6):1713-8. PubMed ID: 23377184 [TBL] [Abstract][Full Text] [Related]
53. A Simple and Rapid Turn On ESIPT Fluorescent Probe for Colorimetric and Ratiometric Detection of Biothiols in Living Cells. Wang Y; Zhu M; Jiang E; Hua R; Na R; Li QX Sci Rep; 2017 Jun; 7(1):4377. PubMed ID: 28663561 [TBL] [Abstract][Full Text] [Related]
54. A dual-channel fluorescent probe targeting lysosomes for differential detection of Cys/Hcy and GSH: Applications in food, pharmaceutical analysis and bioimaging. Liu Y; Fan L; Song J; Hou P; Wang H; Wang J; He C; Chen S Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():125011. PubMed ID: 39213831 [TBL] [Abstract][Full Text] [Related]
55. A red-emitting Europium(III) complex as a luminescent probe with large Stokes shift for the sequential determination of Cu Zhang J; Zhou X; Wang J; Fang D Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121663. PubMed ID: 35917616 [TBL] [Abstract][Full Text] [Related]
56. A dual-emission fluorescent probe for discriminating cysteine from homocysteine and glutathione in living cells and zebrafish models. Lu Z; Lu Y; Sun X; Fan C; Long Z; Gao L Bioorg Chem; 2019 Nov; 92():103215. PubMed ID: 31541803 [TBL] [Abstract][Full Text] [Related]
57. Carbon quantum dot-AgOH colloid fluorescent probe for selective detection of biothiols based on the inner filter effect. Zhou N; Shi Y; Sun C; Zhang X; Zhao W Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117847. PubMed ID: 31818643 [TBL] [Abstract][Full Text] [Related]
58. Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe. Gao Y; Li Y; Zou X; Huang H; Su X Anal Chim Acta; 2012 Jun; 731():68-74. PubMed ID: 22652266 [TBL] [Abstract][Full Text] [Related]
59. BODIPY-based turn-on fluorescent probes for cysteine and homocysteine. Gao J; Tao Y; Wang N; He J; Zhang J; Zhao W Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():77-84. PubMed ID: 29860171 [TBL] [Abstract][Full Text] [Related]
60. A Simple Long-wavelength Fluorescent Probe for Simultaneous Discrimination of Cysteine/Homocysteine and Glutathione/Hydrogen Sulfide with Two Separated Fluorescence Emission Channels by Single Wavelength Excitation. Zhu H; Liu C; Zhang H; Jia P; Li Z; Zhang X; Yu Y; Sheng W; Zhu B Anal Sci; 2020 Feb; 36(2):255-259. PubMed ID: 31588065 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]