These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties. Lee JH; Kim SH; Oh KW Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983 [TBL] [Abstract][Full Text] [Related]
24. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams. Leszczyńska M; Malewska E; Ryszkowska J; Kurańska M; Gloc M; Leszczyński MK; Prociak A Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916735 [TBL] [Abstract][Full Text] [Related]
25. Nanocomposites of Rigid Polyurethane Foam and Graphene Nanoplates Obtained by Exfoliation of Natural Graphite in Polymeric 4,4'-Diphenylmethane Diisocyanate. Shin SR; Lee DS Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215012 [TBL] [Abstract][Full Text] [Related]
26. Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams. Członka S; Strąkowska A; Kairytė A Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545580 [TBL] [Abstract][Full Text] [Related]
27. Anti-flammability, mechanical and thermal properties of bio-based rigid polyurethane foams with the addition of flame retardants. Zhang G; Lin X; Zhang Q; Jiang K; Chen W; Han D RSC Adv; 2020 Aug; 10(53):32156-32161. PubMed ID: 35518161 [TBL] [Abstract][Full Text] [Related]
28. Valorization of Agricultural Rice Straw as a Sustainable Feedstock for Rigid Polyurethane/Polyisocyanurate Foam Production. Dingcong RG; Ahalajal MAN; Mendija LCC; Ruda-Bayor RJG; Maravillas FP; Cavero AI; Cea EJC; Pantaleon KJM; Tejas KJGD; Limbaga EA; Dumancas GG; Malaluan RM; Lubguban AA ACS Omega; 2024 Mar; 9(11):13100-13111. PubMed ID: 38524426 [TBL] [Abstract][Full Text] [Related]
29. Bio-Based Rigid Polyurethane Foams Modified with Phosphorus Flame Retardants. Zemła M; Prociak A; Michałowski S Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012126 [TBL] [Abstract][Full Text] [Related]
30. POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Strąkowska A; Członka S; Strzelec K Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252660 [TBL] [Abstract][Full Text] [Related]
31. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams. Prociak A; Kucała M; Kurańska M; Barczewski M Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765513 [TBL] [Abstract][Full Text] [Related]
32. Bio-Degradable Polyurethane Foams Produced by Liquefied Polyol from Wheat Straw Biomass. Serrano L; Rincón E; García A; Rodríguez J; Briones R Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182792 [TBL] [Abstract][Full Text] [Related]
33. Composites of Semi-Rigid Polyurethane Foams with Keratin Fibers Derived from Poultry Feathers and Flame Retardant Additives. Wrześniewska-Tosik K; Ryszkowska J; Mik T; Wesołowska E; Kowalewski T; Pałczyńska M; Sałasińska K; Walisiak D; Czajka A Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33317209 [TBL] [Abstract][Full Text] [Related]
34. Effect of Evening Primrose Oil-Based Polyol on the Properties of Rigid Polyurethane⁻Polyisocyanurate Foams for Thermal Insulation. Paciorek-Sadowska J; Borowicz M; Czupryński B; Isbrandt M Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961260 [TBL] [Abstract][Full Text] [Related]
35. Open-Cell Spray Polyurethane Foams Based on Biopolyols from Fruit Seed Oils. Kurańska M; Malewska E; Ożóg H; Sędzimir J; Put A; Kowalik N; Michałowski S; Zemła M; Kucała M; Prociak A Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675064 [TBL] [Abstract][Full Text] [Related]
36. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols. Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082 [TBL] [Abstract][Full Text] [Related]
37. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams. Andersons J; Kirpluks M; Cabulis U Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32549317 [TBL] [Abstract][Full Text] [Related]
38. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties. Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702 [TBL] [Abstract][Full Text] [Related]
39. Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol. Kosmela P; Hejna A; Suchorzewski J; Piszczyk Ł; Haponiuk JT Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164320 [TBL] [Abstract][Full Text] [Related]
40. Cork Porous Biocomposites with Polyurethane Matrix Modified with Polyol Based on Used Cooking Oil. Kurańska M; Ptak M; Malewska E; Prociak A; Barczewski M; Dymek M; Fernandes FAO; de Sousa RA; Polaczek K; Studniarz K; Uram K Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]