These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31817067)

  • 1. Self-Powered Smart Insole for Monitoring Human Gait Signals.
    Wang W; Cao J; Yu J; Liu R; Bowen CR; Liao WH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Self-Powered Piezo-Resistive Smart Insole Equipped with Low-Power BLE Connectivity for Remote Gait Monitoring.
    de Fazio R; Perrone E; Velázquez R; De Vittorio M; Visconti P
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.
    Fuh YK; Ho HC
    Nanotechnology; 2016 Mar; 27(9):095401. PubMed ID: 26822295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Insole for Robust Wearable Biomechanical Energy Harvesting in Harsh Environments.
    Zhou Z; Weng L; Tat T; Libanori A; Lin Z; Ge L; Yang J; Chen J
    ACS Nano; 2020 Oct; 14(10):14126-14133. PubMed ID: 33044812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Textile Piezoelectric Nanogenerator Based on 3D Knitted Fabric Electrode for Wearable Applications.
    Wan X; Shen Y; Luo T; Xu M; Cong H; Chen C; Jiang G; He H
    ACS Sens; 2024 Jun; 9(6):2989-2998. PubMed ID: 38771707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing.
    Kar E; Bose N; Dutta B; Mukherjee N; Mukherjee S
    ACS Appl Mater Interfaces; 2019 May; 11(19):17501-17512. PubMed ID: 31007019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Interactive Triboelectric Nanogenerator as a Self-Powered Smart Seat.
    Chandrasekhar A; Alluri NR; Saravanakumar B; Selvarajan S; Kim SJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9692-9. PubMed ID: 27023206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics.
    Maity K; Garain S; Henkel K; Schmeißer D; Mandal D
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data.
    Liu W; Long Z; Yang G; Xing L
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless piezoelectric devices based on electrospun PVDF/BaTiO
    Guo W; Tan C; Shi K; Li J; Wang XX; Sun B; Huang X; Long YZ; Jiang P
    Nanoscale; 2018 Sep; 10(37):17751-17760. PubMed ID: 30211423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices.
    Tamang A; Ghosh SK; Garain S; Alam MM; Haeberle J; Henkel K; Schmeisser D; Mandal D
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16143-7. PubMed ID: 26189605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature-Driven Biocompatible Epidermal Electronic Skin for Real-Time Wireless Monitoring of Human Physiological Signals.
    Kar E; Ghosh P; Pratihar S; Tavakoli M; Sen S
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20372-20384. PubMed ID: 37067294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics.
    Zhang K; Wang X; Yang Y; Wang ZL
    ACS Nano; 2015; 9(4):3521-9. PubMed ID: 25687592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles.
    González I; Fontecha J; Hervás R; Bravo J
    Sensors (Basel); 2015 Jul; 15(7):16589-613. PubMed ID: 26184199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.