These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31817067)

  • 21. Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting.
    Zhang L; Su C; Cheng L; Cui N; Gu L; Qin Y; Yang R; Zhou F
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26824-26829. PubMed ID: 31271026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 3D-Printed Capacitive Smart Insole for Plantar Pressure Monitoring.
    Samarentsis AG; Makris G; Spinthaki S; Christodoulakis G; Tsiknakis M; Pantazis AK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Energy Harvester Consisting of Piezoelectric Fibers with Largely Enhanced 20 V for Wearable and Muscle-Driven Applications.
    Fuh YK; Ye JC; Chen PC; Ho HC; Huang ZM
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16923-31. PubMed ID: 26140290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring.
    Chen X; Parida K; Wang J; Xiong J; Lin MF; Shao J; Lee PS
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42200-42209. PubMed ID: 29111642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clinometric Gait Analysis Using Smart Insoles in Patients With Hemiplegia After Stroke: Pilot Study.
    Seo M; Shin MJ; Park TS; Park JH
    JMIR Mhealth Uhealth; 2020 Sep; 8(9):e22208. PubMed ID: 32909949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shoe-Insole Technology for Injury Prevention in Walking.
    Nagano H; Begg RK
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing.
    Zheng H; Zi Y; He X; Guo H; Lai YC; Wang J; Zhang SL; Wu C; Cheng G; Wang ZL
    ACS Appl Mater Interfaces; 2018 May; 10(17):14708-14715. PubMed ID: 29659250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring.
    Zhu M; Shi Q; He T; Yi Z; Ma Y; Yang B; Chen T; Lee C
    ACS Nano; 2019 Feb; 13(2):1940-1952. PubMed ID: 30741521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Tool for Gait Analysis: Validation Study of the Smart Insole PODOSmart
    Ziagkas E; Loukovitis A; Zekakos DX; Chau TD; Petrelis A; Grouios G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Self-Powered Wearable Sensor for Continuous Wireless Sweat Monitoring.
    Gai Y; Wang E; Liu M; Xie L; Bai Y; Yang Y; Xue J; Qu X; Xi Y; Li L; Luo D; Li Z
    Small Methods; 2022 Oct; 6(10):e2200653. PubMed ID: 36074976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets.
    Wang Z; Tan L; Pan X; Liu G; He Y; Jin W; Li M; Hu Y; Gu H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28586-28595. PubMed ID: 28783301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole.
    Choi SI; Moon J; Park HC; Choi ST
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bionic stretchable nanogenerator for underwater sensing and energy harvesting.
    Zou Y; Tan P; Shi B; Ouyang H; Jiang D; Liu Z; Li H; Yu M; Wang C; Qu X; Zhao L; Fan Y; Wang ZL; Li Z
    Nat Commun; 2019 Jun; 10(1):2695. PubMed ID: 31217422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Poled Piezoelectric Nanocomposite Fiber Sensors for Wireless Monitoring of Physiological Signals.
    Hasan MM; Rahman M; Sadeque MSB; Ordu M
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):34549-34560. PubMed ID: 38940307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric-Pyroelectric Nanogenerator.
    Sultana A; Ghosh SK; Alam MM; Sadhukhan P; Roy K; Xie M; Bowen CR; Sarkar S; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27279-27287. PubMed ID: 31265242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Moisture-Driven Power Generation for Multifunctional Flexible Sensing Systems.
    Li L; Chen Z; Hao M; Wang S; Sun F; Zhao Z; Zhang T
    Nano Lett; 2019 Aug; 19(8):5544-5552. PubMed ID: 31348665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications.
    Zhang Q; Jin T; Cai J; Xu L; He T; Wang T; Tian Y; Li L; Peng Y; Lee C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103694. PubMed ID: 34796695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fiber-based generator for wearable electronics and mobile medication.
    Zhong J; Zhang Y; Zhong Q; Hu Q; Hu B; Wang ZL; Zhou J
    ACS Nano; 2014 Jun; 8(6):6273-80. PubMed ID: 24766072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Effective Self-Powered Piezoelectric Sensor for Monitoring Basketball Skills.
    Zhao C; Jia C; Zhu Y; Zhao T
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.