These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31817152)

  • 1. Object Identification and Safe Route Recommendation Based on Human Flow for the Visually Impaired.
    Kajiwara Y; Kimura H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple Smartphone-Based Guiding System for Visually Impaired People.
    Lin BS; Lee CC; Chiang PY
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28608811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A navigation system for the visually impaired using colored navigation lines and RFID tags.
    Seto FT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():831-4. PubMed ID: 19963980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A navigation system for the visually impaired an intelligent white cane.
    Fukasawa AJ; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4760-3. PubMed ID: 23366992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An IoT Machine Learning-Based Mobile Sensors Unit for Visually Impaired People.
    Dhou S; Alnabulsi A; Al-Ali AR; Arshi M; Darwish F; Almaazmi S; Alameeri R
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are normally sighted, visually impaired, and blind pedestrians accurate and reliable at making street crossing decisions?
    Hassan SE
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2593-600. PubMed ID: 22427593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the navigation system for the visually impaired by using white cane.
    Hirahara Y; Sakurai Y; Shiidu Y; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4893-6. PubMed ID: 17945865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the obstacle detection system combining orientation sensor of smartphone and distance sensor.
    Tange Y; Takeno S; Hori J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6696-9. PubMed ID: 26737829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Walking Path Generation Through Biped Constraint in Indoor Navigation System for Visually Impaired Individuals.
    Na Q; Zhou H; Yuan H; Gui M; Teng H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1221-1232. PubMed ID: 38466607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Review of Urban Navigation Systems for Visually Impaired People.
    El-Taher FE; Taha A; Courtney J; Mckeever S
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Object Detection Algorithm-Based Braille Image Generation System for the Recognition of Real-Life Obstacles for Visually Impaired People.
    Lee D; Cho J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visibility of LED Blocks Mounted on Crosswalk Boundaries for low Visual Capacity.
    Ikeda N; Takahashi K; Inagaki T; Sato K; Ito S; Seiyama M; Takeuchi K; Ogino H; Fujisawa S
    Stud Health Technol Inform; 2015; 217():512-7. PubMed ID: 26294521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Assistive Device for Blind Pedestrians Using Real-Time Object Detection and Tactile Presentation.
    Shen J; Chen Y; Sawada H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Obstacle Detection System for Navigation Assistance of Visually Impaired People Based on Deep Learning Techniques.
    Said Y; Atri M; Albahar MA; Ben Atitallah A; Alsariera YA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An indoor navigation system for the visually impaired.
    Guerrero LA; Vasquez F; Ochoa SF
    Sensors (Basel); 2012; 12(6):8236-58. PubMed ID: 22969398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of walking while using a smartphone on pedestrians' awareness of roadside events.
    Lin MB; Huang YP
    Accid Anal Prev; 2017 Apr; 101():87-96. PubMed ID: 28208099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of voice navigation system for the visually impaired by using IC tags.
    Takatori N; Nojima K; Matsumoto M; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5181-4. PubMed ID: 17945882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-obstacle aware smart navigation system for visually impaired people in fog connected IoT-cloud environment.
    Mueen A; Awedh M; Zafar B
    Health Informatics J; 2022; 28(3):14604582221112609. PubMed ID: 35801559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.