These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 31817210)
1. iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae. Xu P; Zhang M; Qian P; Li J; Wang X; Wu Y Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817210 [TBL] [Abstract][Full Text] [Related]
2. Proteomics Provides Insight into the Interaction between Mulberry and Silkworm. Wang D; Dong Z; Zhang Y; Guo K; Guo P; Zhao P; Xia Q J Proteome Res; 2017 Jul; 16(7):2472-2480. PubMed ID: 28503925 [TBL] [Abstract][Full Text] [Related]
3. Proteomics analysis of digestive juice from silkworm during Bombyx mori nucleopolyhedrovirus infection. Hu X; Zhu M; Wang S; Zhu L; Xue R; Cao G; Gong C Proteomics; 2015 Aug; 15(15):2691-700. PubMed ID: 25914115 [TBL] [Abstract][Full Text] [Related]
4. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. Gao K; Deng XY; Shang MK; Qin GX; Hou CX; Guo XJ J Proteomics; 2017 Jan; 152():300-311. PubMed ID: 27908826 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Hu X; Chen L; Xiang X; Yang R; Yu S; Wu X Mol Biol Rep; 2012 Apr; 39(4):3427-34. PubMed ID: 21725639 [TBL] [Abstract][Full Text] [Related]
6. Quantitative label-free proteomic analysis reveals differentially expressed proteins in the digestive juice of resistant versus susceptible silkworm strains and their predicted impacts on BmNPV infection. Zhang SZ; Wang J; Zhu LB; Toufeeq S; Xu X; You LL; Li B; Hu P; Xu JP J Proteomics; 2020 Jan; 210():103527. PubMed ID: 31610263 [TBL] [Abstract][Full Text] [Related]
7. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Hu J; Zhu W; Li Y; Guan Q; Yan H; Yu J; Fu Z; Lu X; Tian J Proteomics; 2017 Jul; 17(13-14):. PubMed ID: 28556443 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of fibroin-related genes in middle silk glands is induced by dietary differences in a strain-dependent manner in Bombyx mori. Tatsuke T; Tomita S J Insect Physiol; 2024 Oct; 158():104695. PubMed ID: 39154710 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of 1-deoxynojirimycin in silkworm, Bombyx mori L. Yin H; Shi XQ; Sun B; Ye JJ; Duan ZA; Zhou XL; Cui WZ; Wu XF J Zhejiang Univ Sci B; 2010 Apr; 11(4):286-91. PubMed ID: 20349525 [TBL] [Abstract][Full Text] [Related]
10. Systematic identification of mitochondrial lysine succinylome in silkworm (Bombyx mori) midgut during the larval gluttonous stage. Chen J; Li F; Liu Y; Shen W; Du X; He L; Meng Z; Ma X; Wang Y J Proteomics; 2018 Mar; 174():61-70. PubMed ID: 29288090 [TBL] [Abstract][Full Text] [Related]
11. Post-ingestive stability of a mulberry Kunitz-type protease inhibitor MnKTI-1 in the digestive lumen of silkworm: dual inhibition towards α-amylase and serine protease. Liang J; Lu H; Hao H; Zhang Q; Chen K; Xiang Z; He N Pest Manag Sci; 2024 Jun; 80(6):2860-2873. PubMed ID: 38375972 [TBL] [Abstract][Full Text] [Related]
12. iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. Yu H; Wang X; Xu J; Ma Y; Zhang S; Yu D; Fei D; Muhammad A J Proteomics; 2017 Aug; 165():35-50. PubMed ID: 28624519 [TBL] [Abstract][Full Text] [Related]
13. Absorption of mulberry root urease to the hemolymph of the silkworm, Bombyx mori. Kurahashi H; Atiwetin P; Nagaoka S; Miyata S; Kitajima S; Sugimura Y J Insect Physiol; 2005 Sep; 51(9):1055-61. PubMed ID: 16005015 [TBL] [Abstract][Full Text] [Related]
14. Comparative proteomic analysis between the domesticated silkworm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet. Zhou ZH; Yang HJ; Chen M; Lou CF; Zhang YZ; Chen KP; Wang Y; Yu ML; Yu F; Li JY; Zhong BX J Proteome Res; 2008 Dec; 7(12):5103-11. PubMed ID: 18998723 [TBL] [Abstract][Full Text] [Related]
15. Identification of In-Vitro Red Fluorescent Protein with Antipathogenic Activity from the Midgut of the Silkworm (Bombyx Mori L.). Manjunatha GKS; Peter A; Naika MBN; Niranjana P; Shamprasad P Protein Pept Lett; 2018; 25(3):302-313. PubMed ID: 29336243 [TBL] [Abstract][Full Text] [Related]
16. iTRAQ-based quantitative proteomic analysis of silkworm infected with Beauveria bassiana. Lü D; Xu P; Hou C; Li R; Hu C; Guo X Mol Immunol; 2021 Jul; 135():204-216. PubMed ID: 33930715 [TBL] [Abstract][Full Text] [Related]
17. Comparative proteomic analysis of midgut proteins from male and female Bombyx mori (Lepidoptera: Bombycidae). Qin L; Shi H; Xia H; Chen L; Yao Q; Chen K J Insect Sci; 2014; 14():. PubMed ID: 25502033 [TBL] [Abstract][Full Text] [Related]
18. The physiological differentiation along the midgut of Bombyx mori - inspirations from proteomics and gene expression patterns of the secreted proteins in the ectoperitrophic space. Liu L; Qu M; Yang J; Yang Q Insect Mol Biol; 2018 Apr; 27(2):247-259. PubMed ID: 29251378 [TBL] [Abstract][Full Text] [Related]
19. Expression analysis of chlorophyllid α binding protein, a secretory, red fluorescence protein in the midgut of silkworm, Bombyx mori. Chen L; Yang R; Hu XL; Xiang XW; Wu XF Insect Sci; 2014 Feb; 21(1):20-30. PubMed ID: 23956194 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. Liu HW; Wang LL; Tang X; Dong ZM; Guo PC; Zhao DC; Xia QY; Zhao P J Proteomics; 2018 Feb; 173():115-125. PubMed ID: 29197581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]