BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31817310)

  • 1. Multibranch Gold Nanoparticles as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Fipronil in Eggs.
    Zhao H; Huang D; Zhu S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering.
    Giovannozzi AM; Rolle F; Sega M; Abete MC; Marchis D; Rossi AM
    Food Chem; 2014 Sep; 159():250-6. PubMed ID: 24767052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of fipronil residue in egg on layered gold nanorod-graphene oxide-based 3D SERS substrate.
    Lai HL; Ghosh S; Chattopadhyay S
    Analyst; 2021 Jun; 146(11):3557-3567. PubMed ID: 33904550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral flow immunoassay for the simultaneous detection of fipronil and its metabolites in food samples.
    Yao J; Wang Z; Guo L; Xu X; Liu L; Kuang H; Xu C
    Food Chem; 2021 Sep; 356():129710. PubMed ID: 33836353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Fipronil and Its Metabolites in Eggs by Indirect Competitive ELISA and Lateral-flow Immunochromatographic Strip.
    Zhou XH; Zhang CQ; Zhang X; Sun C; Li J; Xiao X; Zhao YS; Ouyang Q; Wang Y
    Biomed Environ Sci; 2020 Sep; 33(9):731-734. PubMed ID: 33106221
    [No Abstract]   [Full Text] [Related]  

  • 6. Gold Nanoparticles with Different Particle Sizes for the Quantitative Determination of Chlorpyrifos Residues in Soil by SERS.
    He Y; Xiao S; Dong T; Nie P
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31185580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food.
    Sridhar K; Inbaraj BS; Chen BH
    Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy.
    Dowgiallo AM; Guenther DA
    J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles.
    Yazgan NN; Boyacı IH; Topcu A; Tamer U
    Anal Bioanal Chem; 2012 Jun; 403(7):2009-17. PubMed ID: 22552785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO
    Muhammad M; Yao G; Zhong J; Chao K; Aziz MH; Huang Q
    Talanta; 2020 Jan; 207():120324. PubMed ID: 31594576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates.
    Chen X; Lin M; Sun L; Xu T; Lai K; Huang M; Lin H
    Food Chem; 2019 Sep; 293():271-277. PubMed ID: 31151611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of residual fipronil in chicken egg and muscle by LC-MS/MS.
    Zhang M; Bian K; Zhou T; Song X; Liu Q; Meng C; He L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1014():31-6. PubMed ID: 26871280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes.
    Liu Y; Tian H; Chen X; Liu W; Xia K; Huang J; de la Chapelle ML; Huang G; Zhang Y; Fu W
    Mikrochim Acta; 2020 Feb; 187(3):160. PubMed ID: 32040773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L
    Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and Highly Efficient Detection of Ultra-low Concentration of Penicillin G by Gold Nanoparticles/Porous Silicon SERS Active Substrate.
    Wali LA; Hasan KK; Alwan AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():31-36. PubMed ID: 30077894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy.
    Cao C; Li P; Liao H; Wang J; Tang X; Yang L
    Anal Bioanal Chem; 2020 Jul; 412(19):4609-4617. PubMed ID: 32548768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Cadmium in Rice by Surface-enhanced Raman Spectroscopy Based on a Ratiometric Indicator and Conical Holed Enhancing Substrates.
    Zuo Q; Chen Y; Chen ZP; Yu RQ
    Anal Sci; 2018 Dec; 34(12):1405-1410. PubMed ID: 30197387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.