These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31817334)

  • 21. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.
    Nie S; Wang C; Xi X; Luo S; Li G; Tian J; Wang H
    Opt Express; 2018 May; 26(10):A520-A540. PubMed ID: 29801258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.
    Han L; Yang G; Yang H; Xu B; Li Z; Yang X
    Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; Escolà A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LiDAR Is Effective in Characterizing Vine Growth and Detecting Associated Genetic Loci.
    Chedid E; Avia K; Dumas V; Ley L; Reibel N; Butterlin G; Soma M; Lopez-Lozano R; Baret F; Merdinoglu D; Duchêne É
    Plant Phenomics; 2023; 5():0116. PubMed ID: 38026470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the Capability and Potential of LiDAR for Weed Detection.
    Shahbazi N; Ashworth MB; Callow JN; Mian A; Beckie HJ; Speidel S; Nicholls E; Flower KC
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level.
    Jin S; Su Y; Song S; Xu K; Hu T; Yang Q; Wu F; Xu G; Ma Q; Guan H; Pang S; Li Y; Guo Q
    Plant Methods; 2020; 16():69. PubMed ID: 32435271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements.
    Banerjee BP; Spangenberg G; Kant S
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.).
    Burton AL; Johnson JM; Foerster JM; Hirsch CN; Buell CR; Hanlon MT; Kaeppler SM; Brown KM; Lynch JP
    Theor Appl Genet; 2014 Nov; 127(11):2293-311. PubMed ID: 25230896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies.
    Wang X; Singh D; Marla S; Morris G; Poland J
    Plant Methods; 2018; 14():53. PubMed ID: 29997682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Within and combined season prediction models for perennial ryegrass biomass yield using ground- and air-based sensor data.
    Nguyen PT; Shi F; Wang J; Badenhorst PE; Spangenberg GC; Smith KF; Daetwyler HD
    Front Plant Sci; 2022; 13():950720. PubMed ID: 36003811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
    Brede B; Lau A; Bartholomeus HM; Kooistra L
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29039755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong.
    Chan EPY; Fung T; Wong FKK
    Sci Rep; 2021 Jan; 11(1):1751. PubMed ID: 33462354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Varying Light and Dew on Ground Cover Estimates from Active NDVI, RGB, and LiDAR.
    Deery DM; Smith DJ; Davy R; Jimenez-Berni JA; Rebetzke GJ; James RA
    Plant Phenomics; 2021; 2021():9842178. PubMed ID: 34250506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform.
    Li Y; Wen W; Fan J; Gou W; Gu S; Lu X; Yu Z; Wang X; Guo X
    Plant Phenomics; 2023; 5():0043. PubMed ID: 37223316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton.
    Pauli D; Andrade-Sanchez P; Carmo-Silva AE; Gazave E; French AN; Heun J; Hunsaker DJ; Lipka AE; Setter TL; Strand RJ; Thorp KR; Wang S; White JW; Gore MA
    G3 (Bethesda); 2016 Apr; 6(4):865-79. PubMed ID: 26818078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and Development of a Low-Cost UGV 3D Phenotyping Platform with Integrated LiDAR and Electric Slide Rail.
    Cai S; Gou W; Wen W; Lu X; Fan J; Guo X
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology.
    Delagrange S; Rochon P
    Ann Bot; 2011 Oct; 108(6):991-1000. PubMed ID: 21515607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies.
    Montesano PM; Neigh C; Sun G; Duncanson L; Hoek JVD; Jon Ranson K
    Remote Sens Environ; 2017 Jul; 196():76-88. PubMed ID: 32848282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast Phenomics in Vineyards: Development of GRover, the Grapevine Rover, and LiDAR for Assessing Grapevine Traits in the Field.
    Siebers MH; Edwards EJ; Jimenez-Berni JA; Thomas MR; Salim M; Walker RR
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.