These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31817335)

  • 1. Highly Deep Ultraviolet-Transparent h-BN Film Deposited on an Al
    Hao GD; Taniguchi M; Inoue SI
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Ultraviolet Photodetectors Based on Carbon-Doped Two-Dimensional Hexagonal Boron Nitride.
    Wang Y; Meng J; Tian Y; Chen Y; Wang G; Yin Z; Jin P; You J; Wu J; Zhang X
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27361-27367. PubMed ID: 32449615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride.
    Liu H; Meng J; Zhang X; Chen Y; Yin Z; Wang D; Wang Y; You J; Gao M; Jin P
    Nanoscale; 2018 Mar; 10(12):5559-5565. PubMed ID: 29517096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-van der Waals Epitaxy of a Stress-Released AlN Film on Thermally Annealed Hexagonal BN for Deep Ultraviolet Light-Emitting Diodes.
    Wang L; Yang S; Gao Y; Yang J; Duo Y; Song S; Yan J; Wang J; Li J; Wei T
    ACS Appl Mater Interfaces; 2023 May; 15(19):23501-23511. PubMed ID: 37134325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Temperature Direct Growth of Few-Layer Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates.
    Chen J; Wang G; Meng J; Cheng Y; Yin Z; Tian Y; Huang J; Zhang S; Wu J; Zhang X
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7004-7011. PubMed ID: 35080841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the controlled synthesis of hexagonal boron nitride films.
    Ismach A; Chou H; Ferrer DA; Wu Y; McDonnell S; Floresca HC; Covacevich A; Pope C; Piner R; Kim MJ; Wallace RM; Colombo L; Ruoff RS
    ACS Nano; 2012 Jul; 6(7):6378-85. PubMed ID: 22702240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography.
    Altun AO; Jeong JH; Rha JJ; Kim KD; Lee ES
    Nanotechnology; 2007 Nov; 18(46):465302. PubMed ID: 21730473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics.
    Laleyan DA; Zhao S; Woo SY; Tran HN; Le HB; Szkopek T; Guo H; Botton GA; Mi Z
    Nano Lett; 2017 Jun; 17(6):3738-3743. PubMed ID: 28471682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Transparent Conducting Indium Tin Oxide Thin Films Prepared by Radio Frequency Magnetron Sputtering and Thermal Annealing.
    Parida B; Gil Y; Kim H
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1455-1462. PubMed ID: 30469205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [FTIR spectroscopic studies of inner stress on boron carbon nitride thin films].
    Wang YX; Zheng YR; Song Z; Feng KC; Zhao YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1526-9. PubMed ID: 18844154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bias sputtering of granular L1
    Xu C; Varaprasad BSDCS; Laughlin DE; Zhu JG
    Sci Rep; 2023 Jul; 13(1):11087. PubMed ID: 37422591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (Al, Ga)N-Based Quantum Dots Heterostructures on h-BN for UV-C Emission.
    Zaiter A; Nikitskiy N; Nemoz M; Vuong P; Ottapilakkal V; Sundaram S; Ougazzaden A; Brault J
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexagonal Boron Nitride for Photonic Device Applications: A Review.
    Ogawa S; Fukushima S; Shimatani M
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandgap-Tuned 2D Boron Nitride/Tungsten Nitride Nanocomposites for Development of High-Performance Deep Ultraviolet Selective Photodetectors.
    Aldalbahi A; Velázquez R; Zhou AF; Rahaman M; Feng PX
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32717785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Vapor Deposition Growth of Large Single-Crystal Mono-, Bi-, Tri-Layer Hexagonal Boron Nitride and Their Interlayer Stacking.
    Ji Y; Calderon B; Han Y; Cueva P; Jungwirth NR; Alsalman HA; Hwang J; Fuchs GD; Muller DA; Spencer MG
    ACS Nano; 2017 Dec; 11(12):12057-12066. PubMed ID: 29099576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Antireflection Nb₂O₅ Thin Films by the Sputtering Method under Different Deposition Parameters.
    Chen KN; Hsu CM; Liu J; Liou YC; Yang CF
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature Direct Synthesis of Multilayered h-BN without Catalysts by Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition.
    Yamamoto M; Murata H; Miyata N; Takashima H; Nagao M; Mimura H; Neo Y; Murakami K
    ACS Omega; 2023 Feb; 8(6):5497-5505. PubMed ID: 36816676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating the Effect of AlGaN Dielectric Layers in a Polarization Tunnel Junction on the Performance of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes.
    Wang Y; Zhang Z; Guo L; Chen Y; Li Y; Qi Z; Ben J; Sun X; Li D
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties.
    Merenkov IS; Kosinova ML; Maximovskii EA
    Nanotechnology; 2017 May; 28(18):185602. PubMed ID: 28388592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Hydrogen Post-Annealing on Transparent Conductive ITO/Ga2O3 Bi-Layer Films for Deep Ultraviolet Light-Emitting Diodes.
    Kim KH; Kim SJ; Park SY; Kim TG
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7777-80. PubMed ID: 26726411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.