These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31817399)

  • 1. Reusable Standardized Universal Interface Module (RSUIM) for Generic Organ-on-a-Chip Applications.
    Sun Q; Pei J; Li Q; Niu K; Wang X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions.
    Ong LJY; Ching T; Chong LH; Arora S; Li H; Hashimoto M; DasGupta R; Yuen PK; Toh YC
    Lab Chip; 2019 Jun; 19(13):2178-2191. PubMed ID: 31179467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks.
    Yue T; Zhao D; Phan DTT; Wang X; Park JJ; Biviji Z; Hughes CCW; Lee AP
    Microsyst Nanoeng; 2021; 7():4. PubMed ID: 33456784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From chip-in-a-lab to lab-on-a-chip: a portable Coulter counter using a modular platform.
    Dekker S; Isgor PK; Feijten T; Segerink LI; Odijk M
    Microsyst Nanoeng; 2018; 4():34. PubMed ID: 31057922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-cost rapid prototyping and assembly of an open microfluidic device for a 3D vascularized organ-on-a-chip.
    Li Q; Niu K; Wang D; Xuan L; Wang X
    Lab Chip; 2022 Jul; 22(14):2682-2694. PubMed ID: 34581377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models.
    Wang X; Sun Q; Pei J
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects.
    Yuen PK
    Lab Chip; 2016 Sep; 16(19):3700-3707. PubMed ID: 27722698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistep Fluidic Control Network toward the Automated Generation of Organ-on-a-Chip.
    Hsieh HL; Nath P; Huang JH
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4852-4860. PubMed ID: 33448828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices.
    Mousavi Shaegh SA; De Ferrari F; Zhang YS; Nabavinia M; Binth Mohammad N; Ryan J; Pourmand A; Laukaitis E; Banan Sadeghian R; Nadhman A; Shin SR; Nezhad AS; Khademhosseini A; Dokmeci MR
    Biomicrofluidics; 2016 Jul; 10(4):044111. PubMed ID: 27648113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Model System to Therapy: Scalable Production of Perfusable Vascularized Liver Spheroids in "Open-Top" 384-Well Plate.
    Lin DSY; Rajasekar S; Marway MK; Zhang B
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2964-2972. PubMed ID: 34275295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Fabrication of Low-Cost Microfluidic Chips and Microfluidic Routing System for Reconfigurable Multi-(Organ-on-a-Chip) Assembly.
    Abu-Dawas S; Alawami H; Zourob M; Ramadan Q
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a fully integrated platform and disposable microfluidic chips enabling parallel purification of genome segments for assembly.
    Kersaudy-Kerhoas M; Amalou F; Che A; Kelly J; Liu Y; Desmulliez MP; Shu W
    Biotechnol Bioeng; 2014 Aug; 111(8):1627-37. PubMed ID: 24615218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration concepts for multi-organ chips: how to maintain flexibility?!
    Rogal J; Probst C; Loskill P
    Future Sci OA; 2017 Jun; 3(2):FSO180. PubMed ID: 28670472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed Lego
    Nie J; Gao Q; Qiu JJ; Sun M; Liu A; Shao L; Fu JZ; Zhao P; He Y
    Biofabrication; 2018 Mar; 10(3):035001. PubMed ID: 29417931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction, Features and Regulatory Aspects of Organ-Chip for Drug Delivery Applications: Advances and Prospective.
    Gupta B; Malviya R; Srivastava S; Ahmad I; Rab SO; Uniyal P
    Curr Pharm Des; 2024 Jun; ():. PubMed ID: 38859792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.