These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31817434)

  • 1. Computer Vision Approach for the Determination of Microbial Concentration and Growth Kinetics Using a Low Cost Sensor System.
    Grossi M; Parolin C; Vitali B; Riccò B
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light.
    Zhu G; Yan B; Xing M; Tian C
    J Microbiol Methods; 2018 Oct; 153():66-73. PubMed ID: 30195830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated counting of mammalian cell colonies by means of a flat bed scanner and image processing.
    Dahle J; Kakar M; Steen HB; Kaalhus O
    Cytometry A; 2004 Aug; 60(2):182-8. PubMed ID: 15290719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of microbial concentration in ice-cream using the impedance technique.
    Grossi M; Lanzoni M; Pompei A; Lazzarini R; Matteuzzi D; Riccò B
    Biosens Bioelectron; 2008 Jun; 23(11):1616-23. PubMed ID: 18353628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental setup and image processing method for automatic enumeration of bacterial colonies on agar plates.
    Hogekamp L; Hogekamp SH; Stahl MR
    PLoS One; 2020; 15(6):e0232869. PubMed ID: 32579562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.
    Ogawa H; Nasu S; Takeshige M; Funabashi H; Saito M; Matsuoka H
    J Microbiol Methods; 2012 Dec; 91(3):420-8. PubMed ID: 23085533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective object recognition for automated counting of colonies in Petri dishes (automated colony counting).
    Marotz J; Lübbert C; Eisenbeiss W
    Comput Methods Programs Biomed; 2001 Sep; 66(2-3):183-98. PubMed ID: 11551392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation method for serial dilution experiments.
    Ben-David A; Davidson CE
    J Microbiol Methods; 2014 Dec; 107():214-21. PubMed ID: 25205541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated annotation removal in agar plates.
    Vera S; Perez F; Lara L; Ceresa M; Carranza N; Herrero Jover J; Gonzalez Ballester MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3016-9. PubMed ID: 24110362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COVASIAM: an image analysis method that allows detection of confluent microbial colonies and colonies of various sizes for automated counting.
    Corkidi G; Diaz-Uribe R; Folch-Mallol JL; Nieto-Sotelo J
    Appl Environ Microbiol; 1998 Apr; 64(4):1400-4. PubMed ID: 9546177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and fast method for determining colony forming units.
    Sieuwerts S; de Bok FA; Mols E; de vos WM; Vlieg JE
    Lett Appl Microbiol; 2008 Oct; 47(4):275-8. PubMed ID: 18778376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of non-linear microbial inactivation kinetics under dynamic conditions.
    Valdramidis VP; Geeraerd AH; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):146-52. PubMed ID: 18823671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated image analysis with ImageJ of yeast colony forming units from cannabis flowers.
    Stolze N; Bader C; Henning C; Mastin J; Holmes AE; Sutlief AL
    J Microbiol Methods; 2019 Sep; 164():105681. PubMed ID: 31381981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cost-effective solution for the reliable determination of cell numbers of microorganisms in liquid culture.
    Lamb JJ; Eaton-Rye JJ; Hohmann-Marriott MF
    Curr Microbiol; 2013 Aug; 67(2):123-9. PubMed ID: 23468116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms.
    Buzalewicz I; Wysocka-Król K; Podbielska H
    Opt Express; 2010 Jun; 18(12):12992-3005. PubMed ID: 20588428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media.
    Barton DBH; Georghiou D; Dave N; Alghamdi M; Walsh TA; Louis EJ; Foster SS
    BMC Microbiol; 2018 Jan; 18(1):9. PubMed ID: 29368646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple micro-growth assay for enumerating bacteria.
    Brewster JD
    J Microbiol Methods; 2003 Apr; 53(1):77-86. PubMed ID: 12609726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-free microbial colony counting method based on hyperspectral features of agar plates.
    Shi J; Zhang F; Wu S; Guo Z; Huang X; Hu X; Holmes M; Zou X
    Food Chem; 2019 Feb; 274():925-932. PubMed ID: 30373029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial colony counting using distance transform.
    Mukherjee DP; Pal A; Sarma SE; Majumder DD
    Int J Biomed Comput; 1995 Feb; 38(2):131-40. PubMed ID: 7729929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of Lenticules for the process control of enumeration techniques in food and environmental microbiology.
    Lightfoot NF; Richardson IR; Harford JP
    J Appl Microbiol; 2001 Oct; 91(4):660-7. PubMed ID: 11576303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.