These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31817442)

  • 21. Mix Proportion Design of Self-Compacting SFRC with Manufactured Sand Based on the Steel Fiber Aggregate Skeleton Packing Test.
    Ding X; Zhao M; Li J; Shang P; Li C
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32599835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Study of Rubberized Concrete Stress-Strain Behavior for Improving Constitutive Models.
    Strukar K; Kalman Šipoš T; Dokšanović T; Rodrigues H
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fire Performance of Heavyweight Self-Compacting Concrete and Heavyweight High Strength Concrete.
    Aslani F; Hamidi F; Ma Q
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of Iron Tailings Sand as an Environmentally Friendly Alternative to Natural River Sand in High-Strength Concrete: Shrinkage Characterization and Mitigation Strategies.
    Zhang Z; Zhang Z; Yin S; Yu L
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33317177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight backfill.
    Zhang T; Cai G; Duan W
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3872-3883. PubMed ID: 29177776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.
    Kou SC; Lee G; Poon CS; Lai WL
    Waste Manag; 2009 Feb; 29(2):621-8. PubMed ID: 18691863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling Aggregates for Self-Compacting Concrete Production: A Feasible Option.
    Martínez-García R; Guerra-Romero MI; Morán-Del Pozo JM; Brito J; Juan-Valdés A
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks.
    Hadzima-Nyarko M; Nyarko EK; Ademović N; Miličević I; Kalman Šipoš T
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Investigations on the Properties of Epoxy-Resin-Bonded Cement Concrete Containing Sea Sand for Use in Unreinforced Concrete Applications.
    Natarajan S; Pillai NN; Murugan S
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compressive Strength and Durability Properties of Structural Lightweight Concrete with Fine Expanded Glass and/or Clay Aggregates.
    Rumsys D; Spudulis E; Bacinskas D; Kaklauskas G
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of waste rubber as concrete additive.
    Chou LH; Lu CK; Chang JR; Lee MT
    Waste Manag Res; 2007 Feb; 25(1):68-76. PubMed ID: 17346009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Rubber Size on Properties of Crumb Rubber Mortars.
    Yu Y; Zhu H
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving rubber concrete by waste organic sulfur compounds.
    Chou LH; Lin CN; Lu CK; Lee CH; Lee MT
    Waste Manag Res; 2010 Jan; 28(1):29-35. PubMed ID: 19710121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of Stainless Steel Slag Waste in Manufacturing Self-Compacting Concrete.
    Rosales J; Agrela F; Entrenas JA; Cabrera M
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32353927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber.
    Kaewunruen S; Li D; Chen Y; Xiang Z
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.
    Long WJ; Khayat KH; Lemieux G; Xing F; Wang WL
    Materials (Basel); 2015 Mar; 8(3):1089-1107. PubMed ID: 28787990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber.
    Abid SR; Abdul-Hussein ML; Ayoob NS; Ali SH; Kadhum AL
    Heliyon; 2020 Jan; 6(1):e03198. PubMed ID: 31956719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformation Analysis of Reinforced Beams Made of Lightweight Aggregate Concrete.
    Bacinskas D; Rumsys D; Sokolov A; Kaklauskas G
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvements in Aggregate-Paste Interface by the Hydration of Steelmaking Waste in Concretes and Mortars.
    Miñano I; Benito FJ; Valcuende M; Rodríguez C; Parra CJ
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30970542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green and Durable Lightweight Aggregate Concrete: The Role of Waste and Recycled Materials.
    Wang J; Zheng K; Cui N; Cheng X; Ren K; Hou P; Feng L; Zhou Z; Xie N
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32646045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.